Is there a "greatest function" that converges?
Solution 1:
-
Yes, $f(n)=\frac{1}{n(\ln{n})^2}$.
-
No. Assume $f \geq 0$ and $\sum_{n \geq 1}{f(n)} < \infty$.
Then there exists an increasing sequence $N_n$ and some constant $C > 0$ such that $\sum_{N_n+1}^{N_{n+1}}{f(k)} \leq C2^{-n}$.
Then set $g(n)=(p+1)f(n)$, where $N_p < n \leq N_{p+1}$.
Then $\sum_{N_n+1}^{N_{n+1}}{g(k)} \leq C(n+1)2^{-n}$, thus $\sum_{n \geq 1}{g(n)}$ is finite and $g(n) \gg f(n)$.
Solution 2:
1) $$f(n) = \frac{1}{n \log(n)^2}$$
2) No. Given any $g > 0$ such that $\sum_n g(n)$ converges, there is an increasing sequence $M_k$ such that $$\sum_{n \ge M_k} g(n) < 2^{-k}$$
Then
$ \sum_n g(n) h(n)$ converges, where $h(n) = k$ for $M_k \le n < M_{k+1}$.