What does the `forall` keyword in Haskell/GHC do?
I'm beginning to understand how the forall
keyword is used in so-called "existential types" like this:
data ShowBox = forall s. Show s => SB s
This is only a subset, however, of how forall
is used and I simply cannot wrap my mind around its use in things like this:
runST :: forall a. (forall s. ST s a) -> a
Or explaining why these are different:
foo :: (forall a. a -> a) -> (Char, Bool)
bar :: forall a. ((a -> a) -> (Char, Bool))
Or the whole RankNTypes
stuff...
I tend to prefer clear, jargon-free English rather than the kinds of language which are normal in academic environments. Most of the explanations I attempt to read on this (the ones I can find through search engines) have these problems:
- They're incomplete. They explain one part of the use of this keyword (like "existential types") which makes me feel happy until I read code that uses it in a completely different way (like
runST
,foo
andbar
above). - They're densely packed with assumptions that I've read the latest in whatever branch of discrete math, category theory or abstract algebra is popular this week. (If I never read the words "consult the paper whatever for details of implementation" again, it will be too soon.)
- They're written in ways that frequently turn even simple concepts into tortuously twisted and fractured grammar and semantics.
So...
On to the actual question. Can anybody completely explain the forall
keyword in clear, plain English (or, if it exists somewhere, point to such a clear explanation which I've missed) that doesn't assume I'm a mathematician steeped in the jargon?
Edited to add:
There were two stand-out answers from the higher-quality ones below, but unfortunately I can only choose one as best. Norman's answer was detailed and useful, explaining things in a way that showed some of the theoretical underpinnings of forall
and at the same time showing me some of the practical implications of it. yairchu's answer covered an area nobody else mentioned (scoped type variables) and illustrated all of the concepts with code and a GHCi session. Were it possible to select both as best, I would. Unfortunately I can't and, after looking over both answers closely, I've decided that yairchu's slightly edges out Norman's because of the illustrative code and attached explanation. This is a bit unfair, however, because really I needed both answers to understand this to the point that forall
doesn't leave me with a faint sense of dread when I see it in a type signature.
Let's start with a code example:
foob :: forall a b. (b -> b) -> b -> (a -> b) -> Maybe a -> b
foob postProcess onNothin onJust mval =
postProcess val
where
val :: b
val = maybe onNothin onJust mval
This code doesn't compile (syntax error) in plain Haskell 98. It requires an extension to support the forall
keyword.
Basically, there are 3 different common uses for the forall
keyword (or at least so it seems), and each has its own Haskell extension: ScopedTypeVariables
, RankNTypes
/Rank2Types
, ExistentialQuantification
.
The code above doesn't get a syntax error with either of those enabled, but only type-checks with ScopedTypeVariables
enabled.
Scoped Type Variables:
Scoped type variables helps one specify types for code inside where
clauses. It makes the b
in val :: b
the same one as the b
in foob :: forall a b. (b -> b) -> b -> (a -> b) -> Maybe a -> b
.
A confusing point: you may hear that when you omit the forall
from a type it is actually still implicitly there. (from Norman's answer: "normally these languages omit the forall from polymorphic types"). This claim is correct, but it refers to the other uses of forall
, and not to the ScopedTypeVariables
use.
Rank-N-Types:
Let's start with that mayb :: b -> (a -> b) -> Maybe a -> b
is equivalent to mayb :: forall a b. b -> (a -> b) -> Maybe a -> b
, except for when ScopedTypeVariables
is enabled.
This means that it works for every a
and b
.
Let's say you want to do something like this.
ghci> let putInList x = [x]
ghci> liftTup putInList (5, "Blah")
([5], ["Blah"])
What must be the type of this liftTup
? It's liftTup :: (forall x. x -> f x) -> (a, b) -> (f a, f b)
. To see why, let's try to code it:
ghci> let liftTup liftFunc (a, b) = (liftFunc a, liftFunc b)
ghci> liftTup (\x -> [x]) (5, "Hello")
No instance for (Num [Char])
...
ghci> -- huh?
ghci> :t liftTup
liftTup :: (t -> t1) -> (t, t) -> (t1, t1)
"Hmm.. why does GHC infer that the tuple must contain two of the same type? Let's tell it they don't have to be"
-- test.hs
liftTup :: (x -> f x) -> (a, b) -> (f a, f b)
liftTup liftFunc (t, v) = (liftFunc t, liftFunc v)
ghci> :l test.hs
Couldnt match expected type 'x' against inferred type 'b'
...
Hmm. so here GHC doesn't let us apply liftFunc
on v
because v :: b
and liftFunc
wants an x
. We really want our function to get a function that accepts any possible x
!
{-# LANGUAGE RankNTypes #-}
liftTup :: (forall x. x -> f x) -> (a, b) -> (f a, f b)
liftTup liftFunc (t, v) = (liftFunc t, liftFunc v)
So it's not liftTup
that works for all x
, it's the function that it gets that does.
Existential Quantification:
Let's use an example:
-- test.hs
{-# LANGUAGE ExistentialQuantification #-}
data EQList = forall a. EQList [a]
eqListLen :: EQList -> Int
eqListLen (EQList x) = length x
ghci> :l test.hs
ghci> eqListLen $ EQList ["Hello", "World"]
2
How is that different from Rank-N-Types?
ghci> :set -XRankNTypes
ghci> length (["Hello", "World"] :: forall a. [a])
Couldnt match expected type 'a' against inferred type '[Char]'
...
With Rank-N-Types, forall a
meant that your expression must fit all possible a
s. For example:
ghci> length ([] :: forall a. [a])
0
An empty list does work as a list of any type.
So with Existential-Quantification, forall
s in data
definitions mean that, the value contained can be of any suitable type, not that it must be of all suitable types.
Can anybody completely explain the forall keyword in clear, plain English?
No. (Well, maybe Don Stewart can.)
Here are the barriers to a simple, clear explanation or forall
:
It's a quantifier. You have a to have at least a little logic (predicate calculus) to have seen a universal or existential quantifier. If you've never seen predicate calculus or are not comfortable with quantifiers (and I have seen students during PhD qualifying exams who are not comfortable), then for you, there's no easy explanation of
forall
.It's a type quantifier. If you haven't seen System F and gotten some practice writing polymorphic types, you're going to find
forall
confusing. Experience with Haskell or ML is not enough, because normally these languages omit theforall
from polymorphic types. (In my mind, this is a language-design mistake.)-
In Haskell in particular,
forall
is used in ways that I find confusing. (I'm not a type theorist, but my work brings me in contact with a lot of type theory, and I'm quite comfortable with it.) For me, the main source of confusion is thatforall
is used to encode a type that I myself would prefer to write withexists
. It's justified by a tricky bit of type isomorphism involving quantifiers and arrows, and every time I want to understand it, I have to look things up and work out the isomorphism myself.If you are not comfortable with the idea of type isomorphism, or if you don't have any practice thinking about type isomorphisms, this use of
forall
is going to stymie you. While the general concept of
forall
is always the same (binding to introduce a type variable), the details of different uses can vary significantly. Informal English is not a very good tool for explaining the variations. To really understand what's going on, you need some mathematics. In this case the relevant mathematics can be found in Benjamin Pierce's introductory text Types and Programming Languages, which is a very good book.
As for your particular examples,
runST
should make your head hurt. Higher-rank types (forall to the left of an arrow) are rarely found in the wild. I encourage you to read the paper that introducedrunST
: "Lazy Functional State Threads". This is a really good paper, and it will give you a much better intuition for the type ofrunST
in particular and for higher-rank types in general. The explanation take several pages, it's very well done, and I'm not going to try to condense it here.-
Consider
foo :: (forall a. a -> a) -> (Char,Bool) bar :: forall a. ((a -> a) -> (Char, Bool))
If I call
bar
, I can simply pick any typea
that I like, and I can pass it a function from typea
to typea
. For example, I can pass the function(+1)
or the functionreverse
. You can think of theforall
as saying "I get to pick the type now". (The technical word for picking the type is instantiating.)The restrictions on calling
foo
are much more stringent: the argument tofoo
must be a polymorphic function. With that type, the only functions I can pass tofoo
areid
or a function that always diverges or errors, likeundefined
. The reason is that withfoo
, theforall
is to the left of the arrow, so as the caller offoo
I don't get to pick whata
is—rather it's the implementation offoo
that gets to pick whata
is. Becauseforall
is to the left of the arrow, rather than above the arrow as inbar
, the instantiation takes place in the body of the function rather than at the call site.
Summary: A complete explanation of the forall
keyword requires math and can be understood only by someone who has studied the math. Even partial explanations are hard to understand without math. But maybe my partial, non-math explanations help a little. Go read Launchbury and Peyton Jones on runST
!
Addendum: Jargon "above", "below", "to the left of". These have nothing to do with the textual ways types are written and everything to do with abstract-syntax trees. In the abstract syntax, a forall
takes the name of a type variable, and then there is a full type "below" the forall. An arrow takes two types (argument and result type) and forms a new type (the function type). The argument type is "to the left of" the arrow; it is the arrow's left child in the abstract-syntax tree.
Examples:
In
forall a . [a] -> [a]
, the forall is above the arrow; what's to the left of the arrow is[a]
.-
In
forall n f e x . (forall e x . n e x -> f -> Fact x f) -> Block n e x -> f -> Fact x f
the type in parentheses would be called "a forall to the left of an arrow". (I'm using types like this in an optimizer I'm working on.)