A series involving the harmonic numbers : $\sum_{n=1}^{\infty}\frac{H_n}{n^3}$
Let $H_{n}$ be the nth harmonic number defined by $ H_{n} := \sum_{k=1}^{n} \frac{1}{k}$.
How would you prove that
$$\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\frac{\pi^4}{72}?$$
Simply replacing $H_{n}$ with $\sum_{k=1}^{n} \frac{1}{k}$ does not seem like a good starting point. Perhaps another representation of the nth harmonic number would be more useful.
Solution 1:
The Euler sum $\sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}}$, where $q$ is an odd positive integer greater than $1$, can also be evaluated using this approach. See here.
Using the integration representation $$H_{n} = \int_{0}^{1} \frac{1-t^{n}}{1-t} \, dt \ ,$$
we have
$$ \begin{align} \sum_{n=1}^{\infty} \frac{H_{n}}{n^{3}} &= \sum_{n=1}^{\infty} \frac{1}{n^{3}} \int_{0}^{1} \frac{1-t^{n}}{1-t} \ dt \\ &= \int_{0}^{1} \frac{1}{1-t} \sum_{n=1}^{\infty} \frac{1-t^{n}}{n^{3}} \\ &=\int_{0}^{1} \frac{\zeta(3) - \text{Li}_{3}(t)}{1-t} \ dt \tag{1} \\ &=- \Big(\zeta(3)-\text{Li}_{3}(t)\Big) \ln(1-t) \Bigg|_{0}^{1} - \int^{1}_{0} \frac{ \text{Li}_{2}(t) \log(1-t)}{t} \ dt \\ &= -\int_{0}^{1} \frac{ \text{Li}_{2}(t) \log(1-t)}{t} \ dt \\ &= \int_{0}^{1} \text{Li}_{2}(t) \, d \big(\text{Li}_{2}(t)\big) \\ &= \frac{\big(\text{Li}_{2}(t)\big)^{2}}{2} \Bigg|^{1}_{0} \\ &= \frac{\zeta^{2}(2)}{2} \\ &= \frac{\pi^{4}}{72}. \end{align}$$
$ $
$(1)$ https://en.wikipedia.org/wiki/Polylogarithm
Solution 2:
I will try to reduce the sum to an integral: $$ \sum_{n=1}^\infty \frac{H_n}{n^3} = \sum_{n=1}^\infty H_n \frac{1}{\Gamma(3)} \int_0^\infty x^2 \mathrm{e}^{-n x} \mathrm{d} x = \frac{1}{2} \int_0^\infty x^2 \sum_{n=1}^\infty H_n \mathrm{e}^{-n x} \mathrm{d} x \tag{1} $$ We now make use of the following generating function: $$ \sum_{n=1}^\infty H_n z^n = \sum_{n=1}^\infty H_n \Delta_n \left(\frac{z^n}{z-1} \right) $$ where $\Delta_n f_n = f_{n+1}-f_n$. We can now use summation by parts: $$ \sum_{n=1}^m a_n \Delta_n b_n = b_{m+1} a_m - b_1 a_1 - \sum_{n=1}^{m-1} b_{n+1} \Delta_n a_n $$ with $b_n = \frac{z^n}{z-1}$ and $a_n = H_n$, and using $\Delta_n H_n = \frac{1}{n+1}$, we get $$ \sum_{n=1}^\infty H_n z^n = \sum_{n=1}^\infty H_n \Delta_n \left(\frac{z^n}{z-1} \right) = -1 - \sum_{n=1}^\infty \frac{z^{n+1}}{z-1} \frac{1}{n+1} = \frac{\log(1-z)}{z-1} \tag{2} $$ Now, using $(2)$ in $(1)$: $$ \sum_{n=1}^\infty \frac{H_n}{n^3} = -\frac{1}{2} \int_0^\infty x^2 \frac{\log\left(1-\mathrm{e}^{-x}\right)}{1-\mathrm{e}^{-x}} \mathrm{d}x \stackrel{t=\exp(-x)}{=} -\frac{1}{2} \int_0^1 \frac{\log(1-t)}{1-t} \frac{\log^2(t)}{t} \mathrm{d}t \tag{3} $$ The latter integral can be evaluated using derivatives of the Euler beta function: $$ \int_0^1 \frac{\log(1-t)}{1-t} \frac{\log^2(t)}{t} \mathrm{d}t = \lim_{\alpha \downarrow 0} \lim_{\beta \downarrow 0} \frac{\mathrm{d}}{\mathrm{d} \alpha} \frac{\mathrm{d}^2}{\mathrm{d} \beta^2} \int_0^1 \left(1-t\right)^{\alpha-1} t^{\beta-1} \mathrm{d} t = \lim_{\alpha \downarrow 0} \lim_{\beta \downarrow 0} \frac{\mathrm{d}}{\mathrm{d} \alpha} \frac{\mathrm{d}^2}{\mathrm{d} \beta^2} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} $$ Using $$ \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} = \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha + \beta+1)} = \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) \left( 1 - \frac{\pi^2}{6} \alpha \beta + \left(\alpha \beta^2 + \beta \alpha^2\right) \zeta(3) - \frac{\pi^4}{360} \left(4 \alpha \beta^3 + \alpha^2 \beta^2 + 4 \alpha^3 \beta\right) + \cdots \right) $$ Differentiating we get the result: $$ \lim_{\alpha \downarrow 0} \lim_{\beta \downarrow 0} \frac{\mathrm{d}}{\mathrm{d} \alpha} \frac{\mathrm{d}^2}{\mathrm{d} \beta^2} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} = -\frac{\pi^2}{36} $$ yielding with eq. $(3)$: $$ \sum_{n=1}^\infty \frac{H_n}{n^3} = \frac{\pi^4}{72} $$
Solution 3:
Apparently Euler showed in 1775 that: $$2 \sum_{n=1}^{\infty}\frac{H_n}{n^q} = (q+2)\zeta(q+1)- \sum_{m=1}^{q-2}\zeta(m+1)\zeta(q-m)$$ In your case, $q=3$, so that: $$2 \sum_{n=1}^{\infty}\frac{H_n}{n^3} = 5\zeta(4)- \zeta(2)^2 = 5\frac{\pi^4}{90}-\frac{\pi^4}{36}=\frac{\pi^4}{36}$$ The original proof of euler's in english can be found here.