Proving that $\int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx=\frac{\pi^3}{16}$
The following integral was proposed by Cornel Ioan Valean and appeared as Problem $12054$ in the American Mathematical Monthly earlier this year.
Prove $$\int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx=\frac{\pi^3}{16}$$
I had small tries for it, such as writting:
$$I=\int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx\overset{ x\to \tan \frac{x}{2}}=-\frac12 {\int_0^\frac{\pi}{2}\frac{x\ln(1-\sin x)}{\sin x} dx}$$
And with Feynman's trick we obtain: $$J(t)=\int_0^\frac{\pi}{2} \frac{x\ln(1-t\sin x)}{\sin x}dx\Rightarrow J'(t)=\int_0^\frac{\pi}{2} \frac{x}{1-t\sin x}dx$$ But I don't see a way to obtain a closed from for the above integral.
Also from here we have the following relation: $$\int_0^1 \frac{\arctan x \ln(1+x^2)}{x} dx =\frac23 \int_0^1 \frac{\arctan x \ln(1+x)}{x}dx$$ Thus we can rewrite the integral as: $$I=\frac23 \int_0^1 \frac{\arctan x \ln(1+x)}{x}dx -2\int_0^1 \frac{\arctan x \ln(1-x)}{x}dx$$
Another option might be to rewrite: $$\ln\left(\frac{1+x^2}{(1-x)^2}\right)= \ln\left(\frac{1+x}{1-x}\right)+\ln\left(\frac{1+x^2}{1-x^2}\right)$$ $$\Rightarrow I= \int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x}{1-x}\right)dx+\int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x^2}{1-x^2}\right)dx$$ And now to use the power expansion of the log functions to obtain: $$\small I=\sum_{n=0}^\infty \frac{2}{2n+1}\int_0^1 \frac{\arctan x}{x} \, \left(x^{2n+1}+x^{4n+2}\right)dx=\sum_{n=0}^\infty \frac{2}{2n+1}\int_0^1\int_0^1 \frac{\left(x^{2n+1}+x^{4n+2}\right)}{1+y^2x^2}dydx$$
This seems like an awesome integral and I would like to learn more so I am searching for more approaches. Would any of you who also already solved it and submitted the answer to the AMM or know how to solve this integral kindly share the solution here?
Edit: In the meantime I found a nice solution by Roberto Tauraso here and another impressive approach due to Yaghoub Sharifi here.
Solution 1:
Another approach,
Perform integration by parts,
\begin{align*} I&=\int_0^1 \frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)\,dx\\ &=\Big[\ln (x) \ln\left(\frac{1+x^2}{(1-x)^2}\right)\arctan x\Big]_0^1 -\int_0^1 \frac{\ln x}{1+x^2}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx-\int_0^1 \frac{2(1+x)\ln (x)\arctan (x)}{(1-x)(1+x^2)}dx\\ &=-\int_0^1 \frac{\ln x}{1+x^2}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx-2\int_0^1 \frac{(1+x)\ln (x)\arctan (x)}{(1-x)(1+x^2)}dx\\ \end{align*}
For $x\in [0;1]$ define the function $R$ by,
\begin{align*} R(x)=\int_0^x \frac{(1+t)\ln t}{(1-t)(1+t^2)}dt=\int_0^1 \frac{x(1+tx)\ln (tx)}{(1-tx)(1+t^2x^2)}dt\\ \end{align*}
Observe that,
\begin{align*} R(1)=\int_0^1 \frac{t\ln t}{1+t}dt+\int_0^1 \frac{\ln t}{1-t}dt \end{align*} Perform integration by parts,
\begin{align*} I&=-\int_0^1 \frac{\ln x}{1+x^2}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx-2\Big[R(x)\arctan x\Big]_0^1+2\int_0^1\frac{R(x)}{1+x^2}dx\\ &=-\int_0^1 \frac{\ln x}{1+x^2}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx-\frac{\pi}{2}R(1)+2\int_0^1 \int_0^1 \frac{x(1+tx)\ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\\ &=-\int_0^1 \frac{\ln x}{1+x^2}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx-\frac{\pi}{2}R(1)+\int_0^1 \ln x\left[\frac{1}{1+x^2}\ln\left(\frac{1+t^2x^2}{(1-tx)^2}\right)\right]_{t=0}^{t=1} dx+\\ &\int_0^1 \ln t\left[\frac{1}{1+t^2}\ln\left(\frac{1+x^2}{(1-tx)^2}\right)+\frac{2\arctan (tx)}{1-t^2}-\frac{2t\arctan x}{1+t^2}-\frac{2t\arctan x}{1-t^2}\right]_{x=0}^{x=1} dt\\ &=-\frac{\pi }{2}R(1)+\ln 2\int_0^1 \frac{\ln t}{1+t^2}dt-2\int_0^1 \frac{\ln (1-t)\ln t}{1+t^2}dt+2\int_0^1 \frac{\ln t\arctan t}{1-t^2}dt-\\ &\frac{\pi}{2} \int_0^1 \frac{t\ln t}{1+t^2}dt-\frac{\pi}{2} \int_0^1\frac{t\ln t}{1-t^2} dt\\ \end{align*}
For $x\in [0;1]$ define the function $S$ by,
\begin{align*} S(x)=\int_0^x \frac{\ln t}{1-t^2}dt=\int_0^1 \frac{x\ln(tx)}{1-t^2x^2} dt \end{align*}
Perform integration by parts,
\begin{align*} \int_0^1 \frac{\ln x\arctan x}{1-x^2}dx&=\Big[S(x)\arctan x\Big]_0^1-\int_0^1 \frac{S(x)}{1+x^2}dx\\ &=\frac{\pi}{4}S(1)-\int_0^1 \int_0^1 \frac{x\ln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\\ &=\frac{\pi}{4}S(1)-\frac{1}{2}\int_0^1 \left[ \frac{\ln x}{1+x^2}\ln\left(\frac{1+tx}{1-tx} \right)\right]_{t=0}^{t=1} dx-\\ &\frac{1}{2}\int_0^1 \left[ \frac{\ln t}{1+t^2}\ln\left(\frac{1+x^2}{1-t^2x^2} \right)\right]_{x=0}^{x=1}dt\\ &=\frac{\pi}{4}S(1)-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1+t^2}dt+\int_0^1 \frac{\ln(1-x)\ln x}{1+x^2}dx \end{align*}
Therefore,
\begin{align*}I&=\pi\int_0^1\frac{2t\ln t}{t^4-1} dt\end{align*}
Perform the change of variable $y=t^2$,
\begin{align*}I&=\frac{1}{2}\pi \int_0^1 \frac{\ln y}{y^2-1}dy\\ &=\frac{1}{2}\pi\times \frac{3}{4}\zeta(2)\\ &=\frac{\pi^3}{16} \end{align*}
Solution 2:
Put \begin{equation*} I=\int_{0}^1\dfrac{\arctan x}{x}\ln\left(\dfrac{1+x^2}{(1-x)^2}\right)\, \mathrm{d}x. \end{equation*} Via the substitution $ x=\dfrac{z}{z+1}$ we get \begin{equation*} I = \int_{0}^{\infty}\dfrac{\arctan \frac{z}{z+1}\ln(2z^2+2z+1)}{z^2+z}\, \mathrm{d}z. \end{equation*} Put \begin{equation*} \log z=\ln|z|+i\arg z, \quad -\pi<\arg z <\pi. \end{equation*} Then \begin{equation*} \arctan \frac{z}{z+1}\ln(2z^2+2z+1) = \text{Im}\left(\log^2(1+z+iz)\right). \end{equation*} Consequently \begin{equation*} I = \text{Im}\left(\int_{0}^{\infty}\dfrac{\log^2(1+z+iz)}{z^2+z}\right)\mathrm{d}z. \end{equation*} However, $ \log(z) $ is an analytic function in $ \text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $. \begin{gather*} I = \text{Im}\left(\int_{0}^{\infty}\dfrac{\ln^2(2s+1)}{s(s+1-is)}\, \mathrm{d}s\right) = \int_{0}^{\infty}\dfrac{\ln^2(2s+1)}{2s^2+2s+1}\, \mathrm{d}s = \\[2ex] \int_{0}^{\infty}\dfrac{2\ln^2(2s+1)}{(2s+1)^2+1}\, \mathrm{d}s = [t=2s+1] = \\[2ex] \int_{1}^{\infty}\dfrac{\ln^2(t)}{t^2+1}\, \mathrm{d}t =[u= 1/t] = \int_{0}^{1}\dfrac{\ln^2(u)}{u^2+1}\, \mathrm{d}u. \end{gather*} Thus \begin{equation*} 2I = \int_{0}^{\infty}\dfrac{\ln^2(u)}{u^2+1}\, \mathrm{d}u \end{equation*} In order to evaluate this integral we integrate $ \dfrac{\log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus. In this case $ \log z =\ln |z|+i\arg z, \quad 0<\arg z < 2\pi $. We get \begin{equation*} I = \dfrac{\pi^3}{16}. \end{equation*}