Compute $\sum_{k=1}^{\infty}e^{-\pi k^2}\left(\pi k^2-\frac{1}{4}\right)$
I don't know about high school math, but there is an answer using Mellin transforms. First compute the Mellin transform of the sum, then invert to get a closed form expression. Introduce $$ f(x) = \sum_{k\ge 1} e^{- k^2 x} \left(\pi k^2 - \frac{1}{4} \right),$$ so that we are looking for $f(\pi).$
We have straightforwardly (using the definition of the Mellin transform) that the Mellin transform $f^*(s)$ of $f(x)$ is given by $$ f^*(s) = \mathfrak{M}\left(f(x); s\right) = \Gamma(s) \sum_{k\ge 1} \left(\frac{\pi}{k^{2(s-1)}} - \frac{1}{4} \frac{1}{k^{2s}} \right) = \Gamma(s) \left(\pi \zeta(2(s-1)) - \frac{1}{4} \zeta(2s) \right).$$ Now the Mellin inversion integral (which we'll evaluate at $x=\pi$) is $$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f^*(s) x^{-s} ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \left(\pi \zeta(2(s-1)) - \frac{1}{4} \zeta(2s) \right) x^{-s} ds.$$ Now the only singularity of the first zeta term is at $s=3/2$, with residue $$ \operatorname{Res}\left(\Gamma(s) \pi \zeta(2(s-1)) x^{-s}; s=3/2\right) = 1/2\,{\frac {\Gamma \left( 3/2 \right) \pi }{{x}^{3/2}}}.$$ The only singularity of the second zeta term is at $s=1/2$, with residue $$ \operatorname{Res}\left(\Gamma(s) \frac{1}{4} \zeta(2s) x^{-s}; s=1/2\right) = 1/8\,{\frac {\Gamma \left( 1/2 \right) }{\sqrt {x}}}.$$ It follows that $$ f(x) = 1/2\,{\frac {\Gamma \left( 3/2 \right) \pi }{{x}^{3/2}}} - 1/8\,{\frac {\Gamma \left( 1/2 \right) }{\sqrt {x}}}.$$ Finally set $x=\pi$ to get $$\frac{1}{\sqrt{\pi}} \left(1/2\Gamma(3/2)-1/8\Gamma(1/2)\right) = \frac{1}{\sqrt{\pi}} \left(1/4\Gamma(1/2)-1/8\Gamma(1/2)\right) = \frac{1}{8} \frac{1}{\sqrt{\pi}} \Gamma(1/2) = \frac{1}{8}.$$ The reason why there is only one pole in every case is because the trivial zeros of the zeta function cancel the poles of the gamma function.