Converting PANDAS dataframe from monthly to daily
First, parse the month-datestrings into Pandas timestamps:
df['month'] = pd.to_datetime(df['month'], format='%Y-%m')
# month ticker b c
# 0 2014-01-01 AAU 10 0.04
# 1 2014-02-01 AAU 20 0.03
# 2 2014-03-01 AAU 13 0.06
# 3 2014-12-01 AAU 11 0.03
# 4 2014-01-01 ZZY 11 0.11
# 5 2014-02-01 ZZY 6 0.03
# 6 2014-12-01 ZZY 17 0.09
Next, pivot the DataFrame, using the month as the index and the ticker as a column level:
df = df.pivot(index='month', columns='ticker')
# b c
# ticker AAU ZZY AAU ZZY
# month
# 2014-01-01 10 11 0.04 0.11
# 2014-02-01 20 6 0.03 0.03
# 2014-03-01 13 NaN 0.06 NaN
# 2014-12-01 11 17 0.03 0.09
By pivoting now, we will be able to forward-fill each column more easily later.
Now find the start and end dates:
start_date = df.index.min() - pd.DateOffset(day=1)
end_date = df.index.max() + pd.DateOffset(day=31)
Interestingly, note that adding pd.DateOffset(day=31)
will not always result in a date that ends on day 31. If the month is February, adding pd.DateOffset(day=31)
returns the last day in February:
In [130]: pd.Timestamp('2014-2-28') + pd.DateOffset(day=31)
Out[130]: Timestamp('2014-02-28 00:00:00')
That's nice, since that means adding pd.DateOffset(day=31)
will always give us the last valid day in the month.
Now we can reindex and forward-fill the DataFrame:
dates = pd.date_range(start_date, end_date, freq='D')
dates.name = 'date'
df = df.reindex(dates, method='ffill')
which yields
In [160]: df.head()
Out[160]:
b c
ticker AAU ZZY AAU ZZY
date
2014-01-01 10 11 0.04 0.11
2014-01-02 10 11 0.04 0.11
2014-01-03 10 11 0.04 0.11
2014-01-04 10 11 0.04 0.11
2014-01-05 10 11 0.04 0.11
In [161]: df.tail()
Out[161]:
b c
ticker AAU ZZY AAU ZZY
date
2014-12-27 11 17 0.03 0.09
2014-12-28 11 17 0.03 0.09
2014-12-29 11 17 0.03 0.09
2014-12-30 11 17 0.03 0.09
2014-12-31 11 17 0.03 0.09
To move the ticker out of the column index and back into a column:
df = df.stack('ticker')
df = df.sortlevel(level=1)
df = df.reset_index()
So putting it all together:
import pandas as pd
df = pd.read_table('data', sep='\s+')
df['month'] = pd.to_datetime(df['month'], format='%Y-%m')
df = df.pivot(index='month', columns='ticker')
start_date = df.index.min() - pd.DateOffset(day=1)
end_date = df.index.max() + pd.DateOffset(day=31)
dates = pd.date_range(start_date, end_date, freq='D')
dates.name = 'date'
df = df.reindex(dates, method='ffill')
df = df.stack('ticker')
df = df.sortlevel(level=1)
df = df.reset_index()
yields
In [163]: df.head()
Out[163]:
date ticker b c
0 2014-01-01 AAU 10 0.04
1 2014-01-02 AAU 10 0.04
2 2014-01-03 AAU 10 0.04
3 2014-01-04 AAU 10 0.04
4 2014-01-05 AAU 10 0.04
In [164]: df.tail()
Out[164]:
date ticker b c
450 2014-12-27 ZZY 17 0.09
451 2014-12-28 ZZY 17 0.09
452 2014-12-29 ZZY 17 0.09
453 2014-12-30 ZZY 17 0.09
454 2014-12-31 ZZY 17 0.09
Let's do a synthetic experiment. Say we have a daily time series data:
dates = pd.date_range(start, end, freq='D')
ts = pd.Series(data, index=dates)
Generate a monthly time series by averaging all data within a month:
ts_mon = ts.resample('MS', how='mean')
Now try to upsample this monthly time series back to daily time series, with uniform values within a month. The first method that borrows a step from @unutbu using reindex work well:
ts_daily = ts_mon.reindex(dates, method='ffill')
Out:
2000-01-01 100.21
2000-01-02 100.21
...
2000-12-30 80.75
2000-12-31 80.75
The second method using resample doesn't work, as it returns the first day of the last month:
ts_daily = ts_mon.resample('D').ffill()
Out:
2000-01-01 100.21
2000-01-02 100.21
...
2000-11-30 99.33
2000-12-01 80.75