Let $\theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+\theta$ in $\mathbb{Q(\theta)}$

Correct: it takes only $1$ step (= division) in the extended Euclidean algorithm to invert a linear polynomial $\,g\,$ since $ f = q\,g + c \,\Rightarrow\, \bmod f\!:\ q\,g\equiv -c\,\Rightarrow\, 1/g \equiv -q/c,\,$ just as you calculated.


Generally it's easier to use said augmented-matrix form of the extended Euclidean algorithm, e.g. below we compute $\,1/g \pmod{\!f} = 1/(x^2\!+\!1) \pmod{\!x^3\!+\!2x\!+\!1}\,$ over $\,\Bbb Z_3,\,$ from this answer.

$\begin{eqnarray} [\![1]\!]&& &&f = x^3\!+2x+1 &\!\!=&\, \left<\,\color{#c00}1,\,\color{#0a0}0\,\right>\quad\ \ \, {\rm i.e.}\ \qquad\!\:\! f\, =\ \color{#c00}1\cdot f\, +\, \color{#0a0}0\cdot g\\ [\![2]\!]&& &&\qquad\ \, g =x^2\!+1 &\!\!=&\, \left<\,\color{#c00}0,\,\color{#0a0}1\,\right>\quad\ \ \,{\rm i.e.}\ \qquad g\, =\ \color{#c00}0\cdot f\, +\, \color{#0a0}1\cdot g\\ [\![3]\!]&=&[\![1]\!]-x[\![2]\!]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! &&\qquad\qquad\ \ x+1 \,&\!\!=&\, \left<\,\color{#c00}1,\,\color{#0a0}{-x}\,\right>\ \ \ \:\!{\rm i.e.}\quad\! x\!+\!1\, =\, \color{#c00}1\cdot f\,\color{#0c0}{-\,x}\cdot g\\ [\![4]\!]&=&[\![2]\!]+(1\!-\!x)[\![3]\!]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! &&\qquad\qquad\qquad\ 2 \,&\!\!=&\, \left<\,\color{#c00}{1\!-\!x},\,\ \color{#0a0}{1\!-\!x+x^2}\,\right>\\ \end{eqnarray}$

Hence the prior line implies: $\ \ 2\ =\ (\color{#c00}{1\!-\!x})f + (\color{#0a0}{1\!-\!x\!+\!x^2})g $

Thus in $\,\Bbb Z_3[x] \bmod f\!:\,\ {-}1\equiv 2 \equiv (\color{#0a0}{1\!-\!x\!+\!x^2})g\ \Rightarrow\ \bbox[6px,border:1px solid red]{g^{-1}\equiv\, {-}(\color{#0a0}{1\!-\!x\!+\!x^2})}$


$$ \left( \frac{ x^{2} - x + 10 }{ 4 } \right) $$

==================================================

$$ \left( x^{3} + 9 x + 6 \right) $$

$$ \left( x + 1 \right) $$

$$ \left( x^{3} + 9 x + 6 \right) = \left( x + 1 \right) \cdot \color{magenta}{ \left( x^{2} - x + 10 \right) } + \left( -4 \right) $$ $$ \left( x + 1 \right) = \left( -4 \right) \cdot \color{magenta}{ \left( \frac{ - x - 1 }{ 4 } \right) } + \left( 0 \right) $$ $$ \frac{ 0}{1} $$ $$ \frac{ 1}{0} $$ $$ \color{magenta}{ \left( x^{2} - x + 10 \right) } \Longrightarrow \Longrightarrow \frac{ \left( x^{2} - x + 10 \right) }{ \left( 1 \right) } $$ $$ \color{magenta}{ \left( \frac{ - x - 1 }{ 4 } \right) } \Longrightarrow \Longrightarrow \frac{ \left( \frac{ - x^{3} - 9 x - 6 }{ 4 } \right) }{ \left( \frac{ - x - 1 }{ 4 } \right) } $$ $$ \left( x^{3} + 9 x + 6 \right) \left( \frac{ 1}{4 } \right) - \left( x + 1 \right) \left( \frac{ x^{2} - x + 10 }{ 4 } \right) = \left( -1 \right) $$

==============================================================

To display the notation used above: here is a gcd for integers, with the continued fraction displayed in the traditional sideways manner:

$$ \gcd( 54321, 12345 ) = ??? $$

$$ \frac{ 54321 }{ 12345 } = 4 + \frac{ 4941 }{ 12345 } $$ $$ \frac{ 12345 }{ 4941 } = 2 + \frac{ 2463 }{ 4941 } $$ $$ \frac{ 4941 }{ 2463 } = 2 + \frac{ 15 }{ 2463 } $$ $$ \frac{ 2463 }{ 15 } = 164 + \frac{ 3 }{ 15 } $$ $$ \frac{ 15 }{ 3 } = 5 + \frac{ 0 }{ 3 } $$ Simple continued fraction tableau:
$$ \begin{array}{cccccccccccc} & & 4 & & 2 & & 2 & & 164 & & 5 & \\ \frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 4 }{ 1 } & & \frac{ 9 }{ 2 } & & \frac{ 22 }{ 5 } & & \frac{ 3617 }{ 822 } & & \frac{ 18107 }{ 4115 } \end{array} $$ $$ $$ $$ 18107 \cdot 822 - 4115 \cdot 3617 = -1 $$

$$ \gcd( 54321, 12345 ) = 3 $$
$$ 54321 \cdot 822 - 12345 \cdot 3617 = -3 $$