Select DataFrame rows between two dates

Solution 1:

There are two possible solutions:

  • Use a boolean mask, then use df.loc[mask]
  • Set the date column as a DatetimeIndex, then use df[start_date : end_date]

Using a boolean mask:

Ensure df['date'] is a Series with dtype datetime64[ns]:

df['date'] = pd.to_datetime(df['date'])  

Make a boolean mask. start_date and end_date can be datetime.datetimes, np.datetime64s, pd.Timestamps, or even datetime strings:

#greater than the start date and smaller than the end date
mask = (df['date'] > start_date) & (df['date'] <= end_date)

Select the sub-DataFrame:

df.loc[mask]

or re-assign to df

df = df.loc[mask]

For example,

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.random((200,3)))
df['date'] = pd.date_range('2000-1-1', periods=200, freq='D')
mask = (df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10')
print(df.loc[mask])

yields

            0         1         2       date
153  0.208875  0.727656  0.037787 2000-06-02
154  0.750800  0.776498  0.237716 2000-06-03
155  0.812008  0.127338  0.397240 2000-06-04
156  0.639937  0.207359  0.533527 2000-06-05
157  0.416998  0.845658  0.872826 2000-06-06
158  0.440069  0.338690  0.847545 2000-06-07
159  0.202354  0.624833  0.740254 2000-06-08
160  0.465746  0.080888  0.155452 2000-06-09
161  0.858232  0.190321  0.432574 2000-06-10

Using a DatetimeIndex:

If you are going to do a lot of selections by date, it may be quicker to set the date column as the index first. Then you can select rows by date using df.loc[start_date:end_date].

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.random((200,3)))
df['date'] = pd.date_range('2000-1-1', periods=200, freq='D')
df = df.set_index(['date'])
print(df.loc['2000-6-1':'2000-6-10'])

yields

                   0         1         2
date                                    
2000-06-01  0.040457  0.326594  0.492136    # <- includes start_date
2000-06-02  0.279323  0.877446  0.464523
2000-06-03  0.328068  0.837669  0.608559
2000-06-04  0.107959  0.678297  0.517435
2000-06-05  0.131555  0.418380  0.025725
2000-06-06  0.999961  0.619517  0.206108
2000-06-07  0.129270  0.024533  0.154769
2000-06-08  0.441010  0.741781  0.470402
2000-06-09  0.682101  0.375660  0.009916
2000-06-10  0.754488  0.352293  0.339337

While Python list indexing, e.g. seq[start:end] includes start but not end, in contrast, Pandas df.loc[start_date : end_date] includes both end-points in the result if they are in the index. Neither start_date nor end_date has to be in the index however.


Also note that pd.read_csv has a parse_dates parameter which you could use to parse the date column as datetime64s. Thus, if you use parse_dates, you would not need to use df['date'] = pd.to_datetime(df['date']).

Solution 2:

I feel the best option will be to use the direct checks rather than using loc function:

df = df[(df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10')]

It works for me.

Major issue with loc function with a slice is that the limits should be present in the actual values, if not this will result in KeyError.

Solution 3:

You can also use between:

df[df.some_date.between(start_date, end_date)]

Solution 4:

You can use the isin method on the date column like so df[df["date"].isin(pd.date_range(start_date, end_date))]

Note: This only works with dates (as the question asks) and not timestamps.

Example:

import numpy as np   
import pandas as pd

# Make a DataFrame with dates and random numbers
df = pd.DataFrame(np.random.random((30, 3)))
df['date'] = pd.date_range('2017-1-1', periods=30, freq='D')

# Select the rows between two dates
in_range_df = df[df["date"].isin(pd.date_range("2017-01-15", "2017-01-20"))]

print(in_range_df)  # print result

which gives

           0         1         2       date
14  0.960974  0.144271  0.839593 2017-01-15
15  0.814376  0.723757  0.047840 2017-01-16
16  0.911854  0.123130  0.120995 2017-01-17
17  0.505804  0.416935  0.928514 2017-01-18
18  0.204869  0.708258  0.170792 2017-01-19
19  0.014389  0.214510  0.045201 2017-01-20

Solution 5:

Keeping the solution simple and pythonic, I would suggest you to try this.

In case if you are going to do this frequently the best solution would be to first set the date column as index which will convert the column in DateTimeIndex and use the following condition to slice any range of dates.

import pandas as pd

data_frame = data_frame.set_index('date')

df = data_frame[(data_frame.index > '2017-08-10') & (data_frame.index <= '2017-08-15')]