Integration of $\ln\sin x$ from 0 to$ \frac{\pi}{2}$by DUIS

How can we evaluate the integration $$\int_0^{\frac{\pi}{2}}\ln \sin x\,dx$$ by using DUIS(Differentiating under the integral sign)?

This question popped in my head when I was reading an article about DUIS as $\ln |\sin x|$ is the integral of $\cot x$.

Although I am in 12th Standard, I am keen to learn any new and interesting concepts and techniques so please tell me if there are any related to the question. Thanks!


There is another way to evaluate the integral.

Firstly, we have $$\int_0^{\frac{\pi}{2}}\ln \sin x\ dx\overset{t=\frac{\pi}{2}-x}{=}\int_0^{\frac{\pi}{2}}\ln \cos t\ dt,$$ and $$\int_{\frac{\pi}{2}}^{\pi}\ln \sin x\ dx\overset{t=x-\frac{\pi}{2}}{=}\int_0^{\frac{\pi}{2}}\ln \cos t\ dt.$$ Then \begin{align} 2\int_0^{\frac{\pi}{2}}\ln \sin x\,dx &=\int_0^{\frac{\pi}{2}}\ln \sin x\,dx+\int_0^{\frac{\pi}{2}}\ln \cos x\,dx \\ &=\int_0^{\frac{\pi}{2}}\ln \sin 2x\,dx-\frac{\pi}{2}\ln 2 \\ &=\frac{1}{2}\int_0^{\pi}\ln \sin x\ dx-\frac{\pi}{2}\ln 2\\ &=\frac{1}{2}\left(\int_0^{\frac{\pi}{2}}\ln \sin x\ dx+\int_{\frac{\pi}{2}}^{\pi}\ln \sin x\ dx\right)-\frac{\pi}{2}\ln 2\\ &=\int_0^{\frac{\pi}{2}}\ln \sin x\ dx-\frac{\pi}{2}\ln 2. \end{align}

That is $$\int_0^{\frac{\pi}{2}}\ln \sin x\ dx=-\frac{\pi}{2}\ln 2.$$


You can start by defining $$I(a)=\int_0^{\pi/2} \sin^a x\,dx$$ Your desired integral is then just $I'(0)$. Now, in order to evaluate $I(a)$ in closed form, we will have to use the Beta function and its connection to the Gamma function:

\begin{align} I(a)&=\int_0^{\pi/2} \sin^a x\,dx \\ &=\frac{1}{2}B\left(a/2+1/2,1/2\right) \\ &=\frac{\Gamma\left(a/2+1/2\right)\Gamma\left(1/2\right)}{2\Gamma(a/2+1)} \\ &= \frac{\sqrt{\pi}}{2}\frac{\Gamma\left(a/2+1/2\right)}{\Gamma(a/2+1)} \end{align} Differentiating $I(a)$ and letting $a\to 0$ then yields

\begin{align} I'(a)\Big|_{a=0}&=\frac{\sqrt{\pi}}{2}\cdot\frac{\Gamma\left(a/2+1/2\right)\left(\psi^{(0)}\left(a/2+1/2\right) - \psi^{(0)}(a/2+1)\right)}{\Gamma(a/2)}\Biggr|_{a=0} \\ &=-\frac{\sqrt{\pi}}{2}\cdot \sqrt{\pi}\log 2 \\ &=-\frac{\pi}{2}\log 2 \end{align}

And we can conclude that

$$\int_0^{\pi/2} \log\sin x\,dx = -\frac{\pi}{2} \log 2$$