Are nested functions a bad thing in gcc ? [closed]

I know that nested functions are not part of the standard C, but since they're present in gcc (and the fact that gcc is the only compiler i care about), i tend to use them quite often.

Is this a bad thing ? If so, could you show me some nasty examples ? What's the status of nested functions in gcc ? Are they going to be removed ?


Nested functions really don't do anything that you can't do with non-nested ones (which is why neither C nor C++ provide them). You say you are not interested in other compilers - well this may be atrue at this moment, but who knows what the future will bring? I would avoid them, along with all other GCC "enhancements".

A small story to illustrate this - I used to work for a UK Polytechinc which mostly used DEC boxes - specifically a DEC-10 and some VAXen. All the engineering faculty used the many DEC extensions to FORTRAN in their code - they were certain that we would remain a DEC shop forever. And then we replaced the DEC-10 with an IBM mainframe, the FORTRAN compiler of which didn't support any of the extensions. There was much wailing and gnashing of teeth on that day, I can tell you. My own FORTRAN code (an 8080 simulator) ported over to the IBM in a couple of hours (almost all taken up with learning how to drive the IBM compiler), because I had written it in bog-standard FORTRAN-77.


There are times nested functions can be useful, particularly with algorithms that shuffle around lots of variables. Something like a written-out 4-way merge sort could need to keep a lot of local variables, and have a number of pieces of repeated code which use many of them. Calling those bits of repeated code as an outside helper routine would require passing a large number of parameters and/or having the helper routine access them through another level of pointer indirection.

Under such circumstances, I could imagine that nested routines might allow for more efficient program execution than other means of writing the code, at least if the compiler optimizes for the situation where there any recursion that exists is done via re-calling the outermost function; inline functions, space permitting, might be better on non-cached CPUs, but the more compact code offered by having separate routines might be helpful. If inner functions cannot call themselves or each other recursively, they can share a stack frame with the outer function and would thus be able to access its variables without the time penalty of an extra pointer dereference.

All that being said, I would avoid using any compiler-specific features except in circumstances where the immediate benefit outweighs any future cost that might result from having to rewrite the code some other way.