It is the Fourier inversion formula in disguise. In case you have never encountered this theorem before, let me prove the following version (which is obviously far from optimal).

Proposition. Let $F(s) = \int_{0}^{\infty} f(t)e^{-st} \, dt$ be the Laplace transform of $f : [0,\infty) \to \mathbb{R}$. Assume that the following technical conditions hold with some $g : [0,\infty) \to \mathbb{R}$ and $\sigma \in \mathbb{R}$:

  • $f(t) = f(0) + \int_{0}^{t} g(u) \, du$. (In particular, $g$ is the 'derivative' of $f$.)
  • Both $f(t)e^{-\sigma t}$ and $g(t)e^{-\sigma t}$ are Lebesgue-integrable on $[0, \infty)$.

Then for any $s > 0$, we have $$ \lim_{R\to\infty} \frac{1}{2\pi i} \int_{\sigma-iR}^{\sigma+iR} F(z)e^{s z} \, dz = f(s). $$

Proof. Define $S(x) = \frac{1}{2} + \frac{1}{\pi}\int_{0}^{x} \frac{\sin t}{t} \, dt$. Then $S(x)$ is bounded, and by Dirichlet integral, we have

$$ \lim_{R\to\infty} S(Rx) = H(x) := \begin{cases} 1, & x > 0 \\ \frac{1}{2}, & x = 0 \\ 0, & x < 0 \end{cases} $$

(Obviously $H$ denotes the Heaviside step function.) Now we have

\begin{align*} \frac{1}{2\pi i} \int_{\sigma-iR}^{\sigma+iR} F(z)e^{s z} \, dz &= \frac{1}{2\pi} \int_{-R}^{R} F(\sigma + i\xi)e^{s(\sigma+i\xi)} \, d\xi \\ &= \frac{1}{2\pi} \int_{-R}^{R} \left( \int_{0}^{\infty} f(t)e^{-(\sigma+i\xi)t} \, dt \right)e^{s(\sigma+i\xi)} \, d\xi. \end{align*}

By Fubini's theorem, we can interchange the order of integral to obtain

\begin{align*} \frac{1}{2\pi i} \int_{\sigma-iR}^{\sigma+iR} F(z)e^{s z} \, dz &= \int_{0}^{\infty} f(t)e^{-(t-s)\sigma} \left( \frac{1}{2\pi} \int_{-R}^{R} e^{(s-t)i\xi} \, d\xi \right) \, dt \\ &= \int_{0}^{\infty} f(t)e^{-(t-s)\sigma} \left( \frac{\sin R(t-s)}{\pi (t-s)} \right) \, dt \end{align*}

By the assumption, both $f(t)e^{-\sigma t}$ and $(f(t)e^{-\sigma t})' = (f'(t) - \sigma f(t))e^{-\sigma t}$ are Lebesgue-integrable. In particular, this tells that $f(t)e^{-\sigma t}$ converges to $0$ as $t\to\infty$. So by integration by parts,

\begin{align*} \frac{1}{2\pi i} \int_{\sigma-iR}^{\sigma+iR} F(z)e^{s z} \, dz &= - f(0)e^{s\sigma} S(-Rs) - \int_{0}^{\infty} (f(t)e^{-(t-s)\sigma})' S(R(t-s)) \, dt. \end{align*}

As $R \to \infty$, the right-hand side converges to

\begin{align*} \lim_{R\to\infty} \frac{1}{2\pi i} \int_{\sigma-iR}^{\sigma+iR} F(z)e^{s z} \, dz &= - \int_{0}^{\infty} (f(t)e^{-(t-s)\sigma})' H(t-s) \, dt \\ &= - \left[ f(t)e^{-(t-s)\sigma} \right]_{t=s}^{t=\infty} = f(s). \end{align*}

(Pushing the limit inside the integral is justified by the dominated convergence theorem.)