Accept server's self-signed ssl certificate in Java client

Solution 1:

You have basically two options here: add the self-signed certificate to your JVM truststore or configure your client to

Option 1

Export the certificate from your browser and import it in your JVM truststore (to establish a chain of trust):

<JAVA_HOME>\bin\keytool -import -v -trustcacerts
-alias server-alias -file server.cer
-keystore cacerts.jks -keypass changeit
-storepass changeit 

Option 2

Disable Certificate Validation:

// Create a trust manager that does not validate certificate chains
TrustManager[] trustAllCerts = new TrustManager[] { 
    new X509TrustManager() {     
        public java.security.cert.X509Certificate[] getAcceptedIssuers() { 
            return new X509Certificate[0];
        } 
        public void checkClientTrusted( 
            java.security.cert.X509Certificate[] certs, String authType) {
            } 
        public void checkServerTrusted( 
            java.security.cert.X509Certificate[] certs, String authType) {
        }
    } 
}; 

// Install the all-trusting trust manager
try {
    SSLContext sc = SSLContext.getInstance("SSL"); 
    sc.init(null, trustAllCerts, new java.security.SecureRandom()); 
    HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
} catch (GeneralSecurityException e) {
} 
// Now you can access an https URL without having the certificate in the truststore
try { 
    URL url = new URL("https://hostname/index.html"); 
} catch (MalformedURLException e) {
} 

Note that I do not recommend the Option #2 at all. Disabling the trust manager defeats some parts of SSL and makes you vulnerable to man in the middle attacks. Prefer Option #1 or, even better, have the server use a "real" certificate signed by a well known CA.

Solution 2:

There's a better alternative to trusting all certificates: Create a TrustStore that specifically trusts a given certificate and use this to create a SSLContext from which to get the SSLSocketFactory to set on the HttpsURLConnection. Here's the complete code:

File crtFile = new File("server.crt");
Certificate certificate = CertificateFactory.getInstance("X.509").generateCertificate(new FileInputStream(crtFile));
// Or if the crt-file is packaged into a jar file:
// CertificateFactory.getInstance("X.509").generateCertificate(this.class.getClassLoader().getResourceAsStream("server.crt"));


KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());
keyStore.load(null, null);
keyStore.setCertificateEntry("server", certificate);

TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
trustManagerFactory.init(keyStore);

SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(null, trustManagerFactory.getTrustManagers(), null);

HttpsURLConnection connection = (HttpsURLConnection) new URL(url).openConnection();
connection.setSSLSocketFactory(sslContext.getSocketFactory());

You can alternatively load the KeyStore directly from a file or retrieve the X.509 Certificate from any trusted source.

Note that with this code, the certificates in cacerts will not be used. This particular HttpsURLConnection will only trust this specific certificate.

Solution 3:

Apache HttpClient 4.5 supports accepting self-signed certificates:

SSLContext sslContext = SSLContexts.custom()
    .loadTrustMaterial(new TrustSelfSignedStrategy())
    .build();
SSLConnectionSocketFactory socketFactory =
    new SSLConnectionSocketFactory(sslContext);
Registry<ConnectionSocketFactory> reg =
    RegistryBuilder.<ConnectionSocketFactory>create()
    .register("https", socketFactory)
    .build();
HttpClientConnectionManager cm = new PoolingHttpClientConnectionManager(reg);        
CloseableHttpClient httpClient = HttpClients.custom()
    .setConnectionManager(cm)
    .build();
HttpGet httpGet = new HttpGet(url);
CloseableHttpResponse sslResponse = httpClient.execute(httpGet);

This builds an SSL socket factory which will use the TrustSelfSignedStrategy, registers it with a custom connection manager then does an HTTP GET using that connection manager.

I agree with those who chant "don't do this in production", however there are use-cases for accepting self-signed certificates outside production; we use them in automated integration tests, so that we're using SSL (like in production) even when not running on the production hardware.

Solution 4:

I chased down this problem to a certificate provider that is not part of the default JVM trusted hosts as of JDK 8u74. The provider is www.identrust.com, but that was not the domain I was trying to connect to. That domain had gotten its certificate from this provider. See Will the cross root cover trust by the default list in the JDK/JRE? -- read down a couple entries. Also see Which browsers and operating systems support Let’s Encrypt.

So, in order to connect to the domain I was interested in, which had a certificate issued from identrust.com I did the following steps. Basically, I had to get the identrust.com (DST Root CA X3) certificate to be trusted by the JVM. I was able to do that using Apache HttpComponents 4.5 like so:

1: Obtain the certificate from indettrust at Certificate Chain Download Instructions. Click on the DST Root CA X3 link.

2: Save the string to a file named "DST Root CA X3.pem". Be sure to add the lines "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" in the file at the beginning and the end.

3: Create a java keystore file, cacerts.jks with the following command:

keytool -import -v -trustcacerts -alias IdenTrust -keypass yourpassword -file dst_root_ca_x3.pem -keystore cacerts.jks -storepass yourpassword

4: Copy the resulting cacerts.jks keystore into the resources directory of your java/(maven) application.

5: Use the following code to load this file and attach it to the Apache 4.5 HttpClient. This will solve the problem for all domains that have certificates issued from indetrust.com util oracle includes the certificate into the JRE default keystore.

SSLContext sslcontext = SSLContexts.custom()
        .loadTrustMaterial(new File(CalRestClient.class.getResource("/cacerts.jks").getFile()), "yourpasword".toCharArray(),
                new TrustSelfSignedStrategy())
        .build();
// Allow TLSv1 protocol only
SSLConnectionSocketFactory sslsf = new SSLConnectionSocketFactory(
        sslcontext,
        new String[] { "TLSv1" },
        null,
        SSLConnectionSocketFactory.getDefaultHostnameVerifier());
CloseableHttpClient httpclient = HttpClients.custom()
        .setSSLSocketFactory(sslsf)
        .build();

When the project builds then the cacerts.jks will be copied into the classpath and loaded from there. I didn't, at this point in time, test against other ssl sites, but if the above code "chains" in this certificate then they will work too, but again, I don't know.

Reference: Custom SSL context and How do I accept a self-signed certificate with a Java HttpsURLConnection?