How to pretty-print a numpy.array without scientific notation and with given precision?

I'm curious, whether there is any way to print formatted numpy.arrays, e.g., in a way similar to this:

x = 1.23456
print '%.3f' % x

If I want to print the numpy.array of floats, it prints several decimals, often in 'scientific' format, which is rather hard to read even for low-dimensional arrays. However, numpy.array apparently has to be printed as a string, i.e., with %s. Is there a solution for this?


You can use set_printoptions to set the precision of the output:

import numpy as np
x=np.random.random(10)
print(x)
# [ 0.07837821  0.48002108  0.41274116  0.82993414  0.77610352  0.1023732
#   0.51303098  0.4617183   0.33487207  0.71162095]

np.set_printoptions(precision=3)
print(x)
# [ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]

And suppress suppresses the use of scientific notation for small numbers:

y=np.array([1.5e-10,1.5,1500])
print(y)
# [  1.500e-10   1.500e+00   1.500e+03]
np.set_printoptions(suppress=True)
print(y)
# [    0.      1.5  1500. ]

See the docs for set_printoptions for other options.


To apply print options locally, using NumPy 1.15.0 or later, you could use the numpy.printoptions context manager. For example, inside the with-suite precision=3 and suppress=True are set:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

But outside the with-suite the print options are back to default settings:

print(x)    
# [ 0.07334334  0.46132615  0.68935231  0.75379645  0.62424021  0.90115836
#   0.04879837  0.58207504  0.55694118  0.34768638]

If you are using an earlier version of NumPy, you can create the context manager yourself. For example,

import numpy as np
import contextlib

@contextlib.contextmanager
def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally: 
        np.set_printoptions(**original)

x = np.random.random(10)
with printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

To prevent zeros from being stripped from the end of floats:

np.set_printoptions now has a formatter parameter which allows you to specify a format function for each type.

np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print(x)

which prints

[ 0.078  0.480  0.413  0.830  0.776  0.102  0.513  0.462  0.335  0.712]

instead of

[ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]

You can get a subset of the np.set_printoptions functionality from the np.array_str command, which applies only to a single print statement.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html

For example:

In [27]: x = np.array([[1.1, 0.9, 1e-6]]*3)

In [28]: print x
[[  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]]

In [29]: print np.array_str(x, precision=2)
[[  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]]

In [30]: print np.array_str(x, precision=2, suppress_small=True)
[[ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]]

Unutbu gave a really complete answer (they got a +1 from me too), but here is a lo-tech alternative:

>>> x=np.random.randn(5)
>>> x
array([ 0.25276524,  2.28334499, -1.88221637,  0.69949927,  1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']

As a function (using the format() syntax for formatting):

def ndprint(a, format_string ='{0:.2f}'):
    print [format_string.format(v,i) for i,v in enumerate(a)]

Usage:

>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']

>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']

>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']

The index of the array is accessible in the format string:

>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']

FYI Numpy 1.15 (release date pending) will include a context manager for setting print options locally. This means that the following will work the same as the corresponding example in the accepted answer (by unutbu and Neil G) without having to write your own context manager. E.g., using their example:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]