Prove $\int_0^\infty \frac{\ln \tan^2 (ax)}{1+x^2}\,dx = \pi\ln \tanh(a)$
$$ \mbox{How would I prove}\quad \int_{0}^{\infty} {\ln\left(\,\tan^{2}\left(\, ax\,\right)\,\right) \over 1 + x^{2}}\,{\rm d}x =\pi \ln\left(\,\tanh\left(\,\left\vert\, a\,\right\vert\,\right)\,\right)\,{\Large ?}. \qquad a \in {\mathbb R}\verb*\* \left\{\,0\,\right\} $$
Here is another solution:
We remark that
$$ \log\tan^{2}\theta = -4 \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n}\cos 2n\theta \tag{1} $$
and
$$ \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} x^{n} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right). \tag{2} $$
Both are easily proved by using Euler's formula $e^{i\theta} = \cos\theta + i\sin\theta$ and the Taylor series of the logarithm. Also we note that
$$ \int_{0}^{\infty} \frac{t \sin t}{a^2 + t^2} \, dt = \frac{\pi}{2} e^{-|a|}. \tag{3}$$
Then
\begin{align*} \int_{0}^{\infty} \frac{\log\tan^2(ax)}{1+x^2} \, dx &= \int_{0}^{\infty} \log\tan^2(ax) \left( \int_{0}^{\infty} \sin t \, e^{-xt} \, dt \right) \, dx \\ &= \int_{0}^{\infty} \sin t \int_{0}^{\infty} e^{-tx} \log\tan^2(ax) \, dxdt \\ &= -4 \int_{0}^{\infty} \sin t \int_{0}^{\infty} \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n} e^{-tx} \cos (2nax) \, dxdt \\ &= -4 \int_{0}^{\infty} \sin t \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n} \frac{t}{4a^{2}n^{2} + t^{2}} \, dt \\ &= -4 \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{t \sin t}{4a^{2}n^{2} + t^{2}} \, dt \\ &= -2\pi \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} e^{-2an} = \pi \log \left( \frac{1-e^{-2a}}{1+e^{-2a}} \right) \\ &= \pi \log (\tanh a). \end{align*}
An idea with complex contour. Let us choose the path
$$C_R:=[-R,R]\cup\gamma_R:=\{z\in\Bbb C\;;\;z=Re^{it}\,\,,\,0\leq t\leq \pi\}\,\,,\,0<<R\in\Bbb R$$
Take the function
$$f(z):=\frac{\operatorname{Log}(\tan^2az)}{1+z^2}=2\frac{\operatorname{Log}(\tan az)}{1+z^2}$$
Inside the domain enclosed by $\,C_R\,$ above, the function has the pole $\,z=i\,$ (note that at the poles of $\,\tan az\,$ the logarithmic function equals $\,0+\arg(\text{pole})\,$ , and since we're going to choose the branch along the cut from zero to $\,-i\infty \,$ , i.e. the negative y-axis all these give us zero, so we're left only with the zero of the denominator in the positive half complex plane:
$$Res_{z=i}(f)=2\lim_{z\to i}(z-i)\frac{\operatorname{Log}(\tan az)}{z^2+1}=2\frac{\operatorname{Log}(\tan ai)}{2i}=-i\log(\tanh a)$$
We also have that
$$\left|\int_{\gamma_R}2\frac{\operatorname{Log}(\tan az)}{1+z^2}dz\right|\leq2\frac{|\log|\tan az||}{1-R^2}R\pi\xrightarrow[R\to\infty]{}0$$
as using the form (with $\,z=x+yi\,\,,\,x,y\in\Bbb R\,\,,\,y>0\,$)
$$\tan az=\frac{e^{2aiz}-1}{e^{2aiz}+1}\Longrightarrow |\log|\tan az||\leq \left|\log\frac{1+e^{2iy}}{1-e^{2iy}}\right|\xrightarrow [y\to\infty]{}\log 1=0$$
Thus, we finally get by Cauchy's Theorem
$$2\pi i(-i\log(\tanh a))=2\pi\log(\tanh a)=\oint_{C_R} f(z)\,dz=$$
$$=\int\limits_{-R}^R\frac{\log(\tan^2 ax)}{1+x^2}dx+\int_{\gamma_R}f(z)\,dz\xrightarrow[R\to\infty]{}\int\limits_{-\infty}^\infty\frac{\log(\tan^2 x)}{1+x^2}dx$$
Now just divide by two the integral of the even function above and we're done.