Maybe you could do something like substitute $u=\sin{x}$ and get

$$\int du \: \frac{\sin{u}}{\sqrt{1-u^2}}$$

You could Taylor expand the denominator and be in a position to integrate even moments of $\sin{u}$ and see if the resulting series is useful.


For the maclaurin series of $\sin x$ , $\sin x=\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n+1}}{(2n+1)!}$

$\therefore\int\sin(\sin x)~dx=\int\sum\limits_{n=0}^\infty\dfrac{(-1)^n\sin^{2n+1}x}{(2n+1)!}dx$

Now for $\int\sin^{2n+1}x~dx$ , where $n$ is any non-negative integer,

$\int\sin^{2n+1}x~dx$

$=-\int\sin^{2n}x~d(\cos x)$

$=-\int(1-\cos^2x)^n~d(\cos x)$

$=-\int\sum\limits_{k=0}^nC_k^n(-1)^k\cos^{2k}x~d(\cos x)$

$=\sum\limits_{k=0}^n\dfrac{(-1)^{k+1}n!\cos^{2k+1}x}{k!(n-k)!(2k+1)}+C$

$\therefore\int\sum\limits_{n=0}^\infty\dfrac{(-1)^n\sin^{2n+1}x}{(2n+1)!}dx=\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^{n+k+1}n!\cos^{2k+1}x}{k!(n-k)!(2n+1)!(2k+1)}+C$