How can I link to a specific glibc version?
When I compile something on my Ubuntu Lucid 10.04 PC it gets linked against glibc. Lucid uses 2.11 of glibc. When I run this binary on another PC with an older glibc, the command fails saying there's no glibc 2.11...
As far as I know glibc uses symbol versioning. Can I force gcc to link against a specific symbol version?
In my concrete use I try to compile a gcc cross toolchain for ARM.
You are correct in that glibc uses symbol versioning. If you are curious, the symbol versioning implementation introduced in glibc 2.1 is described here and is an extension of Sun's symbol versioning scheme described here.
One option is to statically link your binary. This is probably the easiest option.
You could also build your binary in a chroot build environment, or using a glibc-new => glibc-old cross-compiler.
According to the http://www.trevorpounds.com blog post Linking to Older Versioned Symbols (glibc), it is possible to to force any symbol to be linked against an older one so long as it is valid by using the same .symver
pseudo-op that is used for defining versioned symbols in the first place. The following example is excerpted from the blog post.
The following example makes use of glibc’s realpath, but makes sure it is linked against an older 2.2.5 version.
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
__asm__(".symver realpath,realpath@GLIBC_2.2.5");
int main()
{
const char* unresolved = "/lib64";
char resolved[PATH_MAX+1];
if(!realpath(unresolved, resolved))
{ return 1; }
printf("%s\n", resolved);
return 0;
}
Setup 1: compile your own glibc without dedicated GCC and use it
Since it seems impossible to do just with symbol versioning hacks, let's go one step further and compile glibc ourselves.
This setup might work and is quick as it does not recompile the whole GCC toolchain, just glibc.
But it is not reliable as it uses host C runtime objects such as crt1.o
, crti.o
, and crtn.o
provided by glibc. This is mentioned at: https://sourceware.org/glibc/wiki/Testing/Builds?action=recall&rev=21#Compile_against_glibc_in_an_installed_location Those objects do early setup that glibc relies on, so I wouldn't be surprised if things crashed in wonderful and awesomely subtle ways.
For a more reliable setup, see Setup 2 below.
Build glibc and install locally:
export glibc_install="$(pwd)/glibc/build/install"
git clone git://sourceware.org/git/glibc.git
cd glibc
git checkout glibc-2.28
mkdir build
cd build
../configure --prefix "$glibc_install"
make -j `nproc`
make install -j `nproc`
Setup 1: verify the build
test_glibc.c
#define _GNU_SOURCE
#include <assert.h>
#include <gnu/libc-version.h>
#include <stdatomic.h>
#include <stdio.h>
#include <threads.h>
atomic_int acnt;
int cnt;
int f(void* thr_data) {
for(int n = 0; n < 1000; ++n) {
++cnt;
++acnt;
}
return 0;
}
int main(int argc, char **argv) {
/* Basic library version check. */
printf("gnu_get_libc_version() = %s\n", gnu_get_libc_version());
/* Exercise thrd_create from -pthread,
* which is not present in glibc 2.27 in Ubuntu 18.04.
* https://stackoverflow.com/questions/56810/how-do-i-start-threads-in-plain-c/52453291#52453291 */
thrd_t thr[10];
for(int n = 0; n < 10; ++n)
thrd_create(&thr[n], f, NULL);
for(int n = 0; n < 10; ++n)
thrd_join(thr[n], NULL);
printf("The atomic counter is %u\n", acnt);
printf("The non-atomic counter is %u\n", cnt);
}
Compile and run with test_glibc.sh
:
#!/usr/bin/env bash
set -eux
gcc \
-L "${glibc_install}/lib" \
-I "${glibc_install}/include" \
-Wl,--rpath="${glibc_install}/lib" \
-Wl,--dynamic-linker="${glibc_install}/lib/ld-linux-x86-64.so.2" \
-std=c11 \
-o test_glibc.out \
-v \
test_glibc.c \
-pthread \
;
ldd ./test_glibc.out
./test_glibc.out
The program outputs the expected:
gnu_get_libc_version() = 2.28
The atomic counter is 10000
The non-atomic counter is 8674
Command adapted from https://sourceware.org/glibc/wiki/Testing/Builds?action=recall&rev=21#Compile_against_glibc_in_an_installed_location but --sysroot
made it fail with:
cannot find /home/ciro/glibc/build/install/lib/libc.so.6 inside /home/ciro/glibc/build/install
so I removed it.
ldd
output confirms that the ldd
and libraries that we've just built are actually being used as expected:
+ ldd test_glibc.out
linux-vdso.so.1 (0x00007ffe4bfd3000)
libpthread.so.0 => /home/ciro/glibc/build/install/lib/libpthread.so.0 (0x00007fc12ed92000)
libc.so.6 => /home/ciro/glibc/build/install/lib/libc.so.6 (0x00007fc12e9dc000)
/home/ciro/glibc/build/install/lib/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2 (0x00007fc12f1b3000)
The gcc
compilation debug output shows that my host runtime objects were used, which is bad as mentioned previously, but I don't know how to work around it, e.g. it contains:
COLLECT_GCC_OPTIONS=/usr/lib/gcc/x86_64-linux-gnu/7/../../../x86_64-linux-gnu/crt1.o
Setup 1: modify glibc
Now let's modify glibc with:
diff --git a/nptl/thrd_create.c b/nptl/thrd_create.c
index 113ba0d93e..b00f088abb 100644
--- a/nptl/thrd_create.c
+++ b/nptl/thrd_create.c
@@ -16,11 +16,14 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
+#include <stdio.h>
+
#include "thrd_priv.h"
int
thrd_create (thrd_t *thr, thrd_start_t func, void *arg)
{
+ puts("hacked");
_Static_assert (sizeof (thr) == sizeof (pthread_t),
"sizeof (thr) != sizeof (pthread_t)");
Then recompile and re-install glibc, and recompile and re-run our program:
cd glibc/build
make -j `nproc`
make -j `nproc` install
./test_glibc.sh
and we see hacked
printed a few times as expected.
This further confirms that we actually used the glibc that we compiled and not the host one.
Tested on Ubuntu 18.04.
Setup 2: crosstool-NG pristine setup
This is an alternative to setup 1, and it is the most correct setup I've achieved far: everything is correct as far as I can observe, including the C runtime objects such as crt1.o
, crti.o
, and crtn.o
.
In this setup, we will compile a full dedicated GCC toolchain that uses the glibc that we want.
The only downside to this method is that the build will take longer. But I wouldn't risk a production setup with anything less.
crosstool-NG is a set of scripts that downloads and compiles everything from source for us, including GCC, glibc and binutils.
Yes the GCC build system is so bad that we need a separate project for that.
This setup is only not perfect because crosstool-NG does not support building the executables without extra -Wl
flags, which feels weird since we've built GCC itself. But everything seems to work, so this is only an inconvenience.
Get crosstool-NG and configure it:
git clone https://github.com/crosstool-ng/crosstool-ng
cd crosstool-ng
git checkout a6580b8e8b55345a5a342b5bd96e42c83e640ac5
export CT_PREFIX="$(pwd)/.build/install"
export PATH="/usr/lib/ccache:${PATH}"
./bootstrap
./configure --enable-local
make -j `nproc`
./ct-ng x86_64-unknown-linux-gnu
./ct-ng menuconfig
The only mandatory option that I can see, is making it match your host kernel version to use the correct kernel headers. Find your host kernel version with:
uname -a
which shows me:
4.15.0-34-generic
so in menuconfig
I do:
-
Operating System
Version of linux
so I select:
4.14.71
which is the first equal or older version. It has to be older since the kernel is backwards compatible.
Now you can build with:
env -u LD_LIBRARY_PATH time ./ct-ng build CT_JOBS=`nproc`
and now wait for about thirty minutes to two hours for compilation.
Setup 2: optional configurations
The .config
that we generated with ./ct-ng x86_64-unknown-linux-gnu
has:
CT_GLIBC_V_2_27=y
To change that, in menuconfig
do:
C-library
Version of glibc
save the .config
, and continue with the build.
Or, if you want to use your own glibc source, e.g. to use glibc from the latest git, proceed like this:
-
Paths and misc options
-
Try features marked as EXPERIMENTAL
: set to true
-
-
C-library
-
Source of glibc
-
Custom location
: say yes -
Custom location
-
Custom source location
: point to a directory containing your glibc source
-
-
-
where glibc was cloned as:
git clone git://sourceware.org/git/glibc.git
cd glibc
git checkout glibc-2.28
Setup 2: test it out
Once you have built he toolchain that you want, test it out with:
#!/usr/bin/env bash
set -eux
install_dir="${CT_PREFIX}/x86_64-unknown-linux-gnu"
PATH="${PATH}:${install_dir}/bin" \
x86_64-unknown-linux-gnu-gcc \
-Wl,--dynamic-linker="${install_dir}/x86_64-unknown-linux-gnu/sysroot/lib/ld-linux-x86-64.so.2" \
-Wl,--rpath="${install_dir}/x86_64-unknown-linux-gnu/sysroot/lib" \
-v \
-o test_glibc.out \
test_glibc.c \
-pthread \
;
ldd test_glibc.out
./test_glibc.out
Everything seems to work as in Setup 1, except that now the correct runtime objects were used:
COLLECT_GCC_OPTIONS=/home/ciro/crosstool-ng/.build/install/x86_64-unknown-linux-gnu/bin/../x86_64-unknown-linux-gnu/sysroot/usr/lib/../lib64/crt1.o
Setup 2: failed efficient glibc recompilation attempt
It does not seem possible with crosstool-NG, as explained below.
If you just re-build;
env -u LD_LIBRARY_PATH time ./ct-ng build CT_JOBS=`nproc`
then your changes to the custom glibc source location are taken into account, but it builds everything from scratch, making it unusable for iterative development.
If we do:
./ct-ng list-steps
it gives a nice overview of the build steps:
Available build steps, in order:
- companion_tools_for_build
- companion_libs_for_build
- binutils_for_build
- companion_tools_for_host
- companion_libs_for_host
- binutils_for_host
- cc_core_pass_1
- kernel_headers
- libc_start_files
- cc_core_pass_2
- libc
- cc_for_build
- cc_for_host
- libc_post_cc
- companion_libs_for_target
- binutils_for_target
- debug
- test_suite
- finish
Use "<step>" as action to execute only that step.
Use "+<step>" as action to execute up to that step.
Use "<step>+" as action to execute from that step onward.
therefore, we see that there are glibc steps intertwined with several GCC steps, most notably libc_start_files
comes before cc_core_pass_2
, which is likely the most expensive step together with cc_core_pass_1
.
In order to build just one step, you must first set the "Save intermediate steps" in .config
option for the intial build:
-
Paths and misc options
-
Debug crosstool-NG
Save intermediate steps
-
and then you can try:
env -u LD_LIBRARY_PATH time ./ct-ng libc+ -j`nproc`
but unfortunately, the +
required as mentioned at: https://github.com/crosstool-ng/crosstool-ng/issues/1033#issuecomment-424877536
Note however that restarting at an intermediate step resets the installation directory to the state it had during that step. I.e., you will have a rebuilt libc - but no final compiler built with this libc (and hence, no compiler libraries like libstdc++ either).
and basically still makes the rebuild too slow to be feasible for development, and I don't see how to overcome this without patching crosstool-NG.
Furthermore, starting from the libc
step didn't seem to copy over the source again from Custom source location
, further making this method unusable.
Bonus: stdlibc++
A bonus if you're also interested in the C++ standard library: How to edit and re-build the GCC libstdc++ C++ standard library source?
Link with -static. When you link with -static the linker embeds the library inside the executable, so the executable will be bigger, but it can be executed on a system with an older version of glibc because the program will use it's own library instead of that of the system.
In my opinion, the laziest solution (especially if you don't rely on latest bleeding edge C/C++ features, or latest compiler features) wasn't mentioned yet, so here it is:
Just build on the system with the oldest GLIBC you still want to support.
This is actually pretty easy to do nowadays with technologies like chroot, or KVM/Virtualbox, or docker, even if you don't really want to use such an old distro directly on any pc. In detail, to make a maximum portable binary of your software I recommend following these steps:
-
Just pick your poison of sandbox/virtualization/... whatever, and use it to get yourself a virtual older Ubuntu LTS and compile with the gcc/g++ it has in there by default. That automatically limits your GLIBC to the one available in that environment.
-
Avoid depending on external libs outside of foundational ones: like, you should dynamically link ground-level system stuff like glibc, libGL, libxcb/X11/wayland things, libasound/libpulseaudio, possibly GTK+ if you use that, but otherwise preferrably statically link external libs/ship them along if you can. Especially mostly self-contained libs like image loaders, multimedia decoders, etc can cause less breakage on other distros (breakage can be caused e.g. if only present somewhere in a different major version) if you statically ship them.
With that approach you get an old-GLIBC-compatible binary without any manual symbol tweaks, without doing a fully static binary (that may break for more complex programs because glibc hates that, and which may cause licensing issues for you), and without setting up any custom toolchain, any custom glibc copy, or whatever.
This repo:
https://github.com/wheybags/glibc_version_header
provides a header file that takes care of the details described in the accepted answer.
Basically:
- Download the header of the corresponding GCC you want to link against
- Add
-include /path/to/header.h
to your compiler flags
I also add the linker flags:
-static-libgcc -static-libstdc++ -pthread
But those are dependent on your app's requirements.