Run-length decoding in MATLAB

For clever usage of linear indexing or accumarray, I've sometimes felt the need to generate sequences based on run-length encoding. As there is no built-in function for this, I am asking for the most efficient way to decode a sequence encoded in RLE.

Specification:

As to make this a fair comparison I would like to set up some specifications for the function:

  • If optional second argument values of same length is specified, the output should be according to those values, otherwise just the values 1:length(runLengths).
  • Gracefully handle:
    • zeros in runLengths
    • values being a cell array.
  • Output vector should have same column/row format as runLengths

In short: The function should be equivalent to the following code:

function V = runLengthDecode(runLengths, values)
[~,V] = histc(1:sum(runLengths), cumsum([1,runLengths(:).']));
if nargin>1
    V = reshape(values(V), 1, []);
end
V = shiftdim(V, ~isrow(runLengths));
end

Examples:

Here are a few test cases

runLengthDecode([0,1,0,2])
runLengthDecode([0,1,0,4], [1,2,4,5].')
runLengthDecode([0,1,0,2].', [10,20,30,40])
runLengthDecode([0,3,1,0], {'a','b',1,2})

and their output:

>> runLengthDecode([0,1,0,2])
ans =
     2     4     4

>> runLengthDecode([0,1,0,4], [1,2,4,5].')
ans =    
     2     5     5     5     5

>> runLengthDecode([0,1,0,2].', [10,20,30,40])
ans =
    20
    40
    40

>> runLengthDecode([0,3,1,0],{'a','b',1,2})
ans = 
    'b'    'b'    'b'    [1]

To find out which one is the most efficient solution, we provide a test-script that evaluates the performance. The first plot depicts runtimes for growing length of the vector runLengths, where the entries are uniformly distributed with maximum length 200. A modification of gnovice's solution is the fastest, with Divakar's solution being second place. Speed comparison

This second plot uses nearly the same test data except it includes an initial run of length 2000. This mostly affects both bsxfun solutions, whereas the other solutions will perform quite similarly.

Speed comparison

The tests suggest that a modification of gnovice's original answer will be the most performant.


If you want to do the speed comparison yourself, here's the code used to generate the plot above.

function theLastRunLengthDecodingComputationComparisonYoullEverNeed()
Funcs =  {@knedlsepp0, ...
          @LuisMendo1bsxfun, ...
          @LuisMendo2cumsum, ...
          @gnovice3cumsum, ...
          @Divakar4replicate_bsxfunmask, ...
          @knedlsepp5cumsumaccumarray
          };    
%% Growing number of runs, low maximum sizes in runLengths
ns = 2.^(1:25);
paramGenerators{1} = arrayfun(@(n) @(){randi(200,n,1)}, ns,'uni',0);
paramGenerators{2} = arrayfun(@(n) @(){[2000;randi(200,n,1)]}, ns,'uni',0);
for i = 1:2
    times = compareFunctions(Funcs, paramGenerators{i}, 0.5);
    finishedComputations = any(~isnan(times),2);
    h = figure('Visible', 'off');
    loglog(ns(finishedComputations), times(finishedComputations,:));
    legend(cellfun(@func2str,Funcs,'uni',0),'Location','NorthWest','Interpreter','none');
    title('Runtime comparison for run length decoding - Growing number of runs');
    xlabel('length(runLengths)'); ylabel('seconds');
    print(['-f',num2str(h)],'-dpng','-r100',['RunLengthComparsion',num2str(i)]);
end
end

function times = compareFunctions(Funcs, paramGenerators, timeLimitInSeconds)
if nargin<3
    timeLimitInSeconds = Inf;
end
times = zeros(numel(paramGenerators),numel(Funcs));
for i = 1:numel(paramGenerators)
    Params = feval(paramGenerators{i});
    for j = 1:numel(Funcs)
        if max(times(:,j))<timeLimitInSeconds
            times(i,j) = timeit(@()feval(Funcs{j},Params{:}));
        else
            times(i,j) = NaN;
        end
    end
end
end
%% // #################################
%% // HERE COME ALL THE FANCY FUNCTIONS
%% // #################################
function V = knedlsepp0(runLengths, values)
[~,V] = histc(1:sum(runLengths), cumsum([1,runLengths(:).']));%'
if nargin>1
    V = reshape(values(V), 1, []);
end
V = shiftdim(V, ~isrow(runLengths));
end

%% // #################################
function V = LuisMendo1bsxfun(runLengths, values)
nn = 1:numel(runLengths);
if nargin==1 %// handle one-input case
    values = nn;
end
V = values(nonzeros(bsxfun(@times, nn,...
    bsxfun(@le, (1:max(runLengths)).', runLengths(:).'))));
if size(runLengths,1)~=size(values,1) %// adjust orientation of output vector
    V = V.'; %'
end
end

%% // #################################
function V = LuisMendo2cumsum(runLengths, values)
if nargin==1 %// handle one-input case
    values = 1:numel(runLengths);
end
[ii, ~, jj] = find(runLengths(:));
V(cumsum(jj(end:-1:1))) = 1;
V = values(ii(cumsum(V(end:-1:1))));
if size(runLengths,1)~=size(values,1) %// adjust orientation of output vector
    V = V.'; %'
end
end

%% // #################################
function V = gnovice3cumsum(runLengths, values)
isColumnVector =  size(runLengths,1)>1;
if nargin==1 %// handle one-input case
    values = 1:numel(runLengths);
end
values = reshape(values(runLengths~=0),1,[]);
if isempty(values) %// If there are no runs
    V = []; return;
end
runLengths = nonzeros(runLengths(:));
index = zeros(1,sum(runLengths));
index(cumsum([1;runLengths(1:end-1)])) = 1;
V = values(cumsum(index));
if isColumnVector %// adjust orientation of output vector
    V = V.'; %'
end
end
%% // #################################
function V = Divakar4replicate_bsxfunmask(runLengths, values)
if nargin==1   %// Handle one-input case
    values = 1:numel(runLengths);
end

%// Do size checking to make sure that both values and runlengths are row vectors.
if size(values,1) > 1
    values = values.'; %//'
end
if size(runLengths,1) > 1
    yes_transpose_output = false;
    runLengths = runLengths.'; %//'
else
    yes_transpose_output = true;
end

maxlen = max(runLengths);

all_values = repmat(values,maxlen,1);
%// OR all_values = values(ones(1,maxlen),:);

V = all_values(bsxfun(@le,(1:maxlen)',runLengths)); %//'

%// Bring the shape of V back to the shape of runlengths
if yes_transpose_output
    V = V.'; %//'
end
end
%% // #################################
function V = knedlsepp5cumsumaccumarray(runLengths, values)
isRowVector = size(runLengths,2)>1;
%// Actual computation using column vectors
V = cumsum(accumarray(cumsum([1; runLengths(:)]), 1));
V = V(1:end-1);
%// In case of second argument
if nargin>1
    V = reshape(values(V),[],1);
end
%// If original was a row vector, transpose
if isRowVector
    V = V.'; %'
end
end

Approach 1

This should be reasonably fast. It uses bsxfun to create a matrix of size numel(runLengths)xnumel(runLengths), so it may not be suitable for huge input sizes.

function V = runLengthDecode(runLengths, values)
nn = 1:numel(runLengths);
if nargin==1 %// handle one-input case
    values = nn;
end
V = values(nonzeros(bsxfun(@times, nn,...
    bsxfun(@le, (1:max(runLengths)).', runLengths(:).'))));
if size(runLengths,1)~=size(values,1) %// adjust orientation of output vector
    V = V.';
end

Approach 2

This approach, based on cumsum, is an adaptation of that used in this other answer. It uses less memory than approach 1.

function V = runLengthDecode2(runLengths, values)
if nargin==1 %// handle one-input case
    values = 1:numel(runLengths);
end
[ii, ~, jj] = find(runLengths(:));
V(cumsum(jj(end:-1:1))) = 1;
V = values(ii(cumsum(V(end:-1:1))));
if size(runLengths,1)~=size(values,1) %// adjust orientation of output vector
    V = V.';
end