Replacing few values in a pandas dataframe column with another value
Solution 1:
The easiest way is to use the replace
method on the column. The arguments are a list of the things you want to replace (here ['ABC', 'AB']
) and what you want to replace them with (the string 'A'
in this case):
>>> df['BrandName'].replace(['ABC', 'AB'], 'A')
0 A
1 B
2 A
3 D
4 A
This creates a new Series of values so you need to assign this new column to the correct column name:
df['BrandName'] = df['BrandName'].replace(['ABC', 'AB'], 'A')
Solution 2:
Replace
DataFrame
object has powerful and flexible replace
method:
DataFrame.replace(
to_replace=None,
value=None,
inplace=False,
limit=None,
regex=False,
method='pad',
axis=None)
Note, if you need to make changes in place, use inplace
boolean argument for replace
method:
Inplace
inplace: boolean, default
False
IfTrue
, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this isTrue
.
Snippet
df['BrandName'].replace(
to_replace=['ABC', 'AB'],
value='A',
inplace=True
)
Solution 3:
loc
method can be used to replace multiple values:
df.loc[df['BrandName'].isin(['ABC', 'AB'])] = 'A'
Solution 4:
You could also pass a dict
to the pandas.replace
method:
data.replace({
'column_name': {
'value_to_replace': 'replace_value_with_this'
}
})
This has the advantage that you can replace multiple values in multiple columns at once, like so:
data.replace({
'column_name': {
'value_to_replace': 'replace_value_with_this',
'foo': 'bar',
'spam': 'eggs'
},
'other_column_name': {
'other_value_to_replace': 'other_replace_value_with_this'
},
...
})
Solution 5:
This solution will change the existing dataframe itself:
mydf = pd.DataFrame({"BrandName":["A", "B", "ABC", "D", "AB"], "Speciality":["H", "I", "J", "K", "L"]})
mydf["BrandName"].replace(["ABC", "AB"], "A", inplace=True)