forward fill specific columns in pandas dataframe
Solution 1:
tl;dr:
cols = ['X', 'Y']
df.loc[:,cols] = df.loc[:,cols].ffill()
And I have also added a self containing example:
>>> import pandas as pd
>>> import numpy as np
>>>
>>> ## create dataframe
... ts1 = [0, 1, np.nan, np.nan, np.nan, np.nan]
>>> ts2 = [0, 2, np.nan, 3, np.nan, np.nan]
>>> d = {'X': ts1, 'Y': ts2, 'Z': ts2}
>>> df = pd.DataFrame(data=d)
>>> print(df.head())
X Y Z
0 0 0 0
1 1 2 2
2 NaN NaN NaN
3 NaN 3 3
4 NaN NaN NaN
>>>
>>> ## apply forward fill
... cols = ['X', 'Y']
>>> df.loc[:,cols] = df.loc[:,cols].ffill()
>>> print(df.head())
X Y Z
0 0 0 0
1 1 2 2
2 1 2 NaN
3 1 3 3
4 1 3 NaN
Solution 2:
for col in ['X', 'Y']:
df[col] = df[col].ffill()
Solution 3:
Two columns can be ffill()
simultaneously as given below:
df1 = df[['X','Y']].ffill()
Solution 4:
I used below code, Here for X and Y method can be different also instead of ffill().
df1 = df.fillna({
'X' : df['X'].ffill(),
'Y' : df['Y'].ffill(),
})