Give a demonstration that $\sum\limits_{n=1}^\infty\frac{\sin(n)}{n}$ converges. [duplicate]
Solution 1:
You can conclude it based on Abel partial summation (The result is termed as generalized alternating test or Dirichlet test). We will prove the generalized statement first.
Consider the sum $S_N = \displaystyle \sum_{n=1}^N a(n)b(n)$. Let $A(n) = \displaystyle \sum_{n=1}^N a(n)$. If $b(n) \downarrow 0$ and $A(n)$ is bounded, then the series $\displaystyle \sum_{n=1}^{\infty} a(n)b(n)$ converges.
First note that from Abel summation, we have that $$\sum_{n=1}^N a(n) b(n) = \sum_{n=1}^N b(n)(A(n)-A(n-1)) $$$$= \sum_{n=1}^{N} b(n) A(n) - \sum_{n=1}^N b(n)A(n-1)$$$$ = \sum_{n=1}^{N} b(n) A(n) - \sum_{n=0}^{N-1} b(n+1)A(n)$$$$ = b(N) A(N) - b(1)A(0) + \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ Now if $A(n)$ is bounded i.e. $\vert A(n) \vert \leq M$ and $b(n)$ is decreasing, then we have that $$\sum_{n=1}^{N-1} \left \vert A(n) \right \vert (b(n)-b(n+1)) \leq \sum_{n=1}^{N-1} M (b(n)-b(n+1))\\ = M (b(1) - b(N)) \leq Mb(1)$$ Hence, we have that $\displaystyle \sum_{n=1}^{N-1} \left \vert A(n) \right \vert (b(n)-b(n+1))$ converges and hence $$\displaystyle \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ converges absolutely. Now since $$\sum_{n=1}^N a(n) b(n) = b(N) A(N) + \sum_{n=1}^{N-1} A(n) (b(n)-b(n+1))$$ we have that $\displaystyle \sum_{n=1}^N a(n)b(n)$ converges. In your case, $a(n) = \sin(n)$. Hence, $$A(N) = \displaystyle \sum_{n=1}^N a(n) = \dfrac{\sin((N+1)/2) \sin(N/2)}{\sin(1/2)} \leq \csc(1/2)$$ is bounded. Also, $b(n) = \dfrac1n$ is a monotone decreasing sequence converging to $0$.
Hence, we have that $$\sum_{n=1}^N \dfrac{\sin(n)}n$$ converges.