Please show $\int_0^\infty x^{2n} e^{-x^2}\mathrm dx=\frac{(2n)!}{2^{2n}n!}\frac{\sqrt{\pi}}{2}$ without gamma function?
Alternatively, set $$I(\alpha) = \int_0^\infty e^{-\alpha x^2}\mathrm{d}x,$$ differentiate $n$ times with respect to $\alpha$ and evaluate at $\alpha = 1$.
EDIT: To spell things a little more out, this technique is known as Differentiation under the integral sign. Using the fact that $I(\alpha) =\frac12\sqrt{\frac{\pi}{\alpha}}$ and differentiating to obtain $$\frac{\mathrm{d}^n}{\mathrm{d}\alpha^n} I(\alpha) = (-1)^n\int_0^\infty x^{2n} e^{-\alpha x^2}\mathrm{d}x, $$ some algebraic manipulation and evaluating at $\alpha = 1$ will yield the wanted identity.
Alternatively, integration by parts works immediately.
Let $$a_n=\int_0^\infty x^{2n}e^{-x^2}.$$ Consider $U=x^{2n-1}$ so that $du=(2n-1)x^{2n-2}$, and $dv=xe^{-x^{2}}$ so that $V=-\frac{1}{2}e^{-x^{2}}$.
Then $$\int_{0}^{\infty}x^{2n}e^{-x^{2}}dx=\frac{1}{2}e^{-x^{2}}x^{2n-1}\biggr|_{0}^{\infty}-\int_{0}^{\infty}(2n-1)x^{2n-2}\frac{-1}{2}e^{-x^{2}}dx$$ $$=\frac{(2n-1)}{2}\int_{0}^{\infty}x^{2n-2}e^{-x^{2}}dx=\frac{(2n-1)2n}{2^{2}n}\int_{0}^{\infty}x^{2n-2}e^{-x^{2}}dx$$
Hence $$a_n=\frac{(2n)(2n-1)}{2^2n}a_{n-1}$$ and since $a_0=\frac{\sqrt{\pi}}{2}$ we conclude $$a_n=\int_{0}^{\infty}x^{2n}e^{-x^{2}}dx=\frac{(2n)!}{2^{2n}n!}\frac{\sqrt{\pi}}{2}$$ by induction.
Hope that helps,