Faster version of combn
Is there a way to speed up the combn
command to get all unique combinations of 2 elements taken from a vector?
Usually this would be set up like this:
# Get latest version of data.table
library(devtools)
install_github("Rdatatable/data.table", build_vignettes = FALSE)
library(data.table)
# Toy data
d <- data.table(id=as.character(paste0("A", 10001:15000)))
# Transform data
system.time({
d.1 <- as.data.table(t(combn(d$id, 2)))
})
However, combn
is 10 times slower (23sec versus 3 sec on my computer) than calculating all possible combinations using data.table.
system.time({
d.2 <- d[, list(neighbor=d$id[-which(d$id==id)]), by=c("id")]
})
Dealing with very large vectors, I am searching for a way to save memory by only calculating the unique combinations (like combn
), but with the speed of data.table (see second code snippet).
I appreciate any help.
Solution 1:
You could use combnPrim
from gRbase
source("http://bioconductor.org/biocLite.R")
biocLite("gRbase") # will install dependent packages automatically.
system.time({
d.1 <- as.data.table(t(combn(d$id, 2)))
})
# user system elapsed
# 27.322 0.585 27.674
system.time({
d.2 <- as.data.table(t(combnPrim(d$id,2)))
})
# user system elapsed
# 2.317 0.110 2.425
identical(d.1[order(V1, V2),], d.2[order(V1,V2),])
#[1] TRUE
Solution 2:
Here's a way using data.table
function foverlaps()
, that also turns out to be fast!
require(data.table) ## 1.9.4+
d[, `:=`(id1 = 1L, id2 = .I)] ## add interval columns for overlaps
setkey(d, id1, id2)
system.time(olaps <- foverlaps(d, d, type="within", which=TRUE)[xid != yid])
# 0.603 0.062 0.717
Note that foverlaps()
does not calculate all permutations. The subset xid != yid
is needed to remove self overlaps. The subset could be internally handled more efficiently by implementing ignoreSelf
argument - similar to IRanges::findOverlaps
.
Now it's just a matter of performing a subset using the ids obtained:
system.time(ans <- setDT(list(d$id[olaps$xid], d$id[olaps$yid])))
# 0.576 0.047 0.662
So totally, ~1.4 seconds.
The advantage is that you can do the same way even if your data.table d
has more than 1 column on which you've to get the combinations for, and using the same amount of memory (since we return the indices). In that case, you'd just do:
cbind(d[olaps$xid, ..your_cols], d[olaps$yid, ..your_cols])
But it's limited to replacing just combn(., 2L)
. Not more than 2L.
Solution 3:
A post with any variation of the word Fast in the title is incomplete without benchmarks. Before we post any benchmarks, I would just like to mention that since this question was posted, two highly optimized packages, arrangements
and RcppAlgos
(I am the author) for generating combinations have been released for R
. Note that since version 2.3.0
for RcppAlgos
we can take advantage of multiple threads for even greater efficiency.
To give you an idea of their speed over combn
and gRbase::combnPrim
, here is a basic benchmark:
## We test generating just over 3 million combinations
choose(25, 10)
[1] 3268760
microbenchmark(arrngmnt = arrangements::combinations(25, 10),
combn = combn(25, 10),
gRBase = gRbase::combnPrim(25, 10),
serAlgos = RcppAlgos::comboGeneral(25, 10),
parAlgos = RcppAlgos::comboGeneral(25, 10, nThreads = 4),
unit = "relative", times = 20)
Unit: relative
expr min lq mean median uq max neval
arrngmnt 2.979378 3.072319 1.898390 3.756307 2.139258 0.4842967 20
combn 226.470755 230.410716 118.157110 232.905393 125.718512 17.7778585 20
gRBase 34.219914 34.209820 18.789954 34.218320 19.934485 3.6455493 20
serAlgos 2.836651 3.078791 2.458645 3.703929 2.231475 1.1652445 20
parAlgos 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 20
Now, we benchmark the other functions posted for the very specific case of producing combinations choose 2 and producing a data.table
object.
The functions are as follows:
funAkraf <- function(d) {
a <- comb2.int(length(d$id)) ## comb2.int from the answer given by @akraf
setDT(list(V1 = d$id[a[,1]], V2 = d$id[a[,2]]))
}
funAnirban <- function(d) {
indices <- combi2inds(d$id)
ans2 <- setDT(list(d$id[indices$xid], d$id[indices$yid]))
ans2
}
funArun <- function(d) {
d[, `:=`(id1 = 1L, id2 = .I)] ## add interval columns for overlaps
setkey(d, id1, id2)
olaps <- foverlaps(d, d, type="within", which=TRUE)[xid != yid]
ans <- setDT(list(d$id[olaps$xid], d$id[olaps$yid]))
ans
}
funArrangements <- function(d) {
a <- arrangements::combinations(x = d$id, k = 2)
setDT(list(a[, 1], a[, 2]))
}
funGRbase <- function(d) {
a <- gRbase::combnPrim(d$id,2)
setDT(list(a[1, ], a[2, ]))
}
funOPCombn <- function(d) {
a <- combn(d$id, 2)
setDT(list(a[1, ], a[2, ]))
}
funRcppAlgos <- function(d) {
a <- RcppAlgos::comboGeneral(d$id, 2, nThreads = 4)
setDT(list(a[, 1], a[, 2]))
}
Benchmark with OP Data
And here are the benchmarks on the example given by the OP:
d <- data.table(id=as.character(paste0("A", 10001:15000)))
microbenchmark(funAkraf(d),
funAnirban(d),
funArrangements(d),
funArun(d),
funGRbase(d),
funOPCombn(d),
funRcppAlgos(d),
times = 10, unit = "relative")
Unit: relative
expr min lq mean median uq max neval
funAkraf(d) 3.220550 2.971264 2.815023 2.665616 2.344018 3.383673 10
funAnirban(d) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10
funArrangements(d) 1.464730 1.689231 1.834650 1.960233 1.932361 1.693305 10
funArun(d) 3.256889 2.908075 2.634831 2.729180 2.432277 2.193849 10
funGRbase(d) 3.513847 3.340637 3.327845 3.196399 3.291480 3.129362 10
funOPCombn(d) 30.310469 26.255374 21.656376 22.386270 18.527904 15.626261 10
funRcppAlgos(d) 1.676808 1.956696 1.943773 2.085968 1.949133 1.804180 10
We see that the function provided by @AnirbanMukherjee is the fastest for this task, followed by RcppAlgos
/arrangements
. For this task, nThreads
has no effect as the vector passed is a character
, which is not thread safe. What if we instead converted id
to a factor?
Benchmarks with Factors (i.e. Categorical Variables)
dFac <- d
dFac$id <- as.factor(dFac$id)
library(microbenchmark)
microbenchmark(funAkraf(dFac),
funAnirban(dFac),
funArrangements(dFac),
funArun(dFac),
funGRbase(dFac),
funOPCombn(dFac),
funRcppAlgos(dFac),
times = 10, unit = "relative")
Unit: relative
expr min lq mean median uq max neval
funAkraf(dFac) 10.898202 10.949896 7.589814 10.01369 8.050005 5.557014 10
funAnirban(dFac) 3.104212 3.337344 2.317024 3.00254 2.471887 1.530978 10
funArrangements(dFac) 2.054116 2.058768 1.858268 1.94507 2.797956 1.691875 10
funArun(dFac) 10.646680 12.905119 7.703085 11.50311 8.410893 3.802155 10
funGRbase(dFac) 16.523356 21.609917 12.991400 19.73776 13.599870 6.498135 10
funOPCombn(dFac) 108.301876 108.753085 64.338478 95.56197 65.494335 28.183104 10
funRcppAlgos(dFac) 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 10
Now, we see that RcppAlgos
is around 2x
faster than any other solution. In particular, the RcppAlgos
solution is about 3x
than the formerly fastest solution given by Anirban. It should be noted that this increase in efficiency was possible because factor
variables are really integers
underneath the hood with some additional attributes
.
Confirm Equality
They all give the same result as well. The only caveat is that the gRbase
solution doesn't support factors. That is, if you pass a factor
, it will be converted to character
. Thus all of the solutions will give the same result if you were to pass dFac
except for the gRbase
solution:
identical(funAkraf(d), funOPCombn(d))
#[1] TRUE
identical(funAkraf(d), funArrangements(d))
#[1] TRUE
identical(funRcppAlgos(d), funArrangements(d))
#[1] TRUE
identical(funRcppAlgos(d), funAnirban(d))
#[1] TRUE
identical(funRcppAlgos(d), funArun(d))
#[1] TRUE
## different order... we must sort
identical(funRcppAlgos(d), funGRbase(d))
[1] FALSE
d1 <- funGRbase(d)
d2 <- funRcppAlgos(d)
## now it's the same
identical(d1[order(V1, V2),], d2[order(V1,V2),])
#[1] TRUE
Thanks to @Frank for pointing out how to compare two data.tables
without going through the pains of creating new data.tables
and then arranging them:
fsetequal(funRcppAlgos(d), funGRbase(d))
[1] TRUE
Solution 4:
Here is a solution using Rcpp.
library(Rcpp)
library(data.table)
cppFunction('
Rcpp::DataFrame combi2(Rcpp::CharacterVector inputVector){
int len = inputVector.size();
int retLen = len * (len-1) / 2;
Rcpp::CharacterVector outputVector1(retLen);
Rcpp::CharacterVector outputVector2(retLen);
int start = 0;
for (int i = 0; i < len; ++i){
for (int j = i+1; j < len; ++j){
outputVector1(start) = inputVector(i);
outputVector2(start) = inputVector(j);
++start;
}
}
return(Rcpp::DataFrame::create(Rcpp::Named("id") = outputVector1,
Rcpp::Named("neighbor") = outputVector2));
};
')
# Toy data
d <- data.table(id=as.character(paste0("A", 10001:15000)))
system.time({
d.2 <- d[, list(neighbor=d$id[-which(d$id==id)]), by=c("id")]
})
# 1.908 0.397 2.389
system.time({
d[, `:=`(id1 = 1L, id2 = .I)] ## add interval columns for overlaps
setkey(d, id1, id2)
olaps <- foverlaps(d, d, type="within", which=TRUE)[xid != yid]
ans <- setDT(list(d$id[olaps$xid], d$id[olaps$yid]))
})
# 0.653 0.038 0.705
system.time(ans2 <- combi2(d$id))
# 1.377 0.108 1.495
Using the Rcpp function to get the indices and then form the data.table, works better.
cppFunction('
Rcpp::DataFrame combi2inds(const Rcpp::CharacterVector inputVector){
const int len = inputVector.size();
const int retLen = len * (len-1) / 2;
Rcpp::IntegerVector outputVector1(retLen);
Rcpp::IntegerVector outputVector2(retLen);
int indexSkip;
for (int i = 0; i < len; ++i){
indexSkip = len * i - ((i+1) * i)/2;
for (int j = 0; j < len-1-i; ++j){
outputVector1(indexSkip+j) = i+1;
outputVector2(indexSkip+j) = i+j+1+1;
}
}
return(Rcpp::DataFrame::create(Rcpp::Named("xid") = outputVector1,
Rcpp::Named("yid") = outputVector2));
};
')
system.time({
indices <- combi2inds(d$id)
ans2 <- setDT(list(d$id[indices$xid], d$id[indices$yid]))
})
# 0.389 0.027 0.425
Solution 5:
Here are two base-R solutions if you don't want to use additional dependencies:
comb2.int
usesrep
and other sequence generating functions to generate the desired output.comb2.mat
creates a matrix, usesupper.tri()
to get the upper triangle andwhich(..., arr.ind = TRUE)
to obtain the column and row indices => all combinations.
Possibility 1: comb2.int
comb2.int <- function(n, rep = FALSE){
if(!rep){
# e.g. n=3 => (1,2), (1,3), (2,3)
x <- rep(1:n,(n:1)-1)
i <- seq_along(x)+1
o <- c(0,cumsum((n-2):1))
y <- i-o[x]
}else{
# e.g. n=3 => (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)
x <- rep(1:n,n:1)
i <- seq_along(x)
o <- c(0,cumsum(n:2))
y <- i-o[x]+x-1
}
return(cbind(x,y))
}
Possibility 2: comb2.mat
comb2.mat <- function(n, rep = FALSE){
# Use which(..., arr.ind = TRUE) to get coordinates.
m <- matrix(FALSE, nrow = n, ncol = n)
idxs <- which(upper.tri(m, diag = rep), arr.ind = TRUE)
return(idxs)
}
The functions give the same result as combn(.)
:
for(i in 2:8){
# --- comb2.int ------------------
stopifnot(comb2.int(i) == t(combn(i,2)))
# => Equal
# --- comb2.mat ------------------
m <- comb2.mat(i)
colnames(m) <- NULL # difference 1: colnames
m <- m[order(m[,1]),] # difference 2: output order
stopifnot(m == t(combn(i,2)))
# => Equal up to above differences
}
But I have other elements in my vector than sequencial integers!
Use the return values as indices:
v <- LETTERS[1:5]
c <- comb2.int(length(v))
cbind(v[c[,1]], v[c[,2]])
#> [,1] [,2]
#> [1,] "A" "B"
#> [2,] "A" "C"
#> [3,] "A" "D"
#> [4,] "A" "E"
#> [5,] "B" "C"
#> [6,] "B" "D"
#> [7,] "B" "E"
#> [8,] "C" "D"
#> [9,] "C" "E"
#> [10,] "D" "E"
Benchmark:
time(combn
) = ~5x time(comb2.mat
) = ~80x time(comb2.int
):
library(microbenchmark)
n <- 800
microbenchmark({
comb2.int(n)
},{
comb2.mat(n)
},{
t(combn(n, 2))
})
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> { comb2.int(n) } 4.394051 4.731737 6.350406 5.334463 7.22677 14.68808 100
#> { comb2.mat(n) } 20.131455 22.901534 31.648521 24.411782 26.95821 297.70684 100
#> { t(combn(n, 2)) } 363.687284 374.826268 391.038755 380.012274 389.59960 532.30305 100