Given an array of numbers, return array of products of all other numbers (no division)
I was asked this question in a job interview, and I'd like to know how others would solve it. I'm most comfortable with Java, but solutions in other languages are welcome.
Given an array of numbers,
nums
, return an array of numbersproducts
, whereproducts[i]
is the product of allnums[j], j != i
.Input : [1, 2, 3, 4, 5] Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)] = [120, 60, 40, 30, 24]
You must do this in
O(N)
without using division.
Solution 1:
An explanation of polygenelubricants method is: The trick is to construct the arrays (in the case for 4 elements)
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
Both of which can be done in O(n) by starting at the left and right edges respectively.
Then multiplying the two arrays element by element gives the required result
My code would look something like this:
int a[N] // This is the input
int products_below[N];
p=1;
for(int i=0;i<N;++i) {
products_below[i]=p;
p*=a[i];
}
int products_above[N];
p=1;
for(int i=N-1;i>=0;--i) {
products_above[i]=p;
p*=a[i];
}
int products[N]; // This is the result
for(int i=0;i<N;++i) {
products[i]=products_below[i]*products_above[i];
}
If you need to be O(1) in space too you can do this (which is less clear IMHO)
int a[N] // This is the input
int products[N];
// Get the products below the current index
p=1;
for(int i=0;i<N;++i) {
products[i]=p;
p*=a[i];
}
// Get the products above the curent index
p=1;
for(int i=N-1;i>=0;--i) {
products[i]*=p;
p*=a[i];
}
Solution 2:
Here is a small recursive function (in C++) to do the modofication in place. It requires O(n) extra space (on stack) though. Assuming the array is in a and N holds the array length, we have
int multiply(int *a, int fwdProduct, int indx) {
int revProduct = 1;
if (indx < N) {
revProduct = multiply(a, fwdProduct*a[indx], indx+1);
int cur = a[indx];
a[indx] = fwdProduct * revProduct;
revProduct *= cur;
}
return revProduct;
}