Simple integral help
How do I integrate $$\int_{0}^1 x \bigg\lceil \frac{1}{x} \bigg\rceil \left\{ \frac{1}{x} \right\}\, dx$$
Where $\lceil x \rceil $ is the ceiling function, and $\left\{x\right\}$ is the fractional part function
A related problem.
Hint: try to use the definition of the fractional part function which is defined by
$$ \left\{ x\right\} = x - \lfloor x\rfloor , $$
and the following relation between the floor and ceiling functions
$$ \lceil x \rceil - \lfloor x \rfloor = \begin{cases} 0&\mbox{ if } x\in \mathbb{Z}\\ 1&\mbox{ if } x\not\in \mathbb{Z} \end{cases}. $$
Added:
$$ \int_{0}^1 x \bigg\lceil \frac{1}{x} \bigg\rceil \left\{ \frac{1}{x} \right\}\, dx=\int_{0}^1 x (1+\lfloor 1/x \rfloor)(1/x-\lfloor1/x\rfloor)\, dx. $$
Now, make the change of variables $y=1/x$ to the last integral
$$\int_{0}^1 x (1+\lfloor 1/x \rfloor)(1/x-\lfloor1/x\rfloor)\, dx=\int_{1}^{\infty} \frac{1}{y} (1+\lfloor y \rfloor)(y-\lfloor y\rfloor)\, \frac{dy}{y^2}$$
$$\implies I = \sum_{n=1}^{\infty}\int_{n}^{n+1} \frac{1}{y^3} (1+n)(y-n)\, dy= \frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=\frac{1}{2} $$
Note: To evaluate the sum, use the telescoping technique. First write the summand as
$$ \frac{1}{n(n+1)}= \frac{1}{n}-\frac{1}{n+1}. $$
Now, find the partial sum of the series
$$ s_n = \sum_{k=1}^{n} \left( \frac{1}{k}-\frac{1}{k+1} \right)=1-\frac{1}{n+1}. $$
Then the series sums to
$$ s = \lim_{n \to \infty} s_n = 1. $$
The main idea is to divide $(0,1)$ into "good" intervals. I'lll give only the main steps of computation $$ \int\limits_{(0,1)} x \bigg\lceil \frac{1}{x} \bigg\rceil \left\{ \frac{1}{x} \right\} dx =\sum\limits_{n=1}^\infty\int\limits_{n\leq \frac{1}{x}<n+1} x \bigg\lceil \frac{1}{x} \bigg\rceil \left\{ \frac{1}{x} \right\} dx =\sum\limits_{n=1}^\infty\int\limits_{\frac{1}{n+1}< x\leq \frac{1}{n}} x (n+1) \left(\frac{1}{x}-n\right) dx =\sum\limits_{n=1}^\infty\frac{1}{2n^2+2n}=\frac{1}{2}\sum\limits_{n=1}^\infty\left(\frac{1}{n}-\frac{1}{n+1}\right)=\frac{1}{2} $$