The easiest way is to use a waitable queue of std::function objects. Like this:

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <functional>
#include <chrono>


class ThreadPool
{
    public:

    ThreadPool (int threads) : shutdown_ (false)
    {
        // Create the specified number of threads
        threads_.reserve (threads);
        for (int i = 0; i < threads; ++i)
            threads_.emplace_back (std::bind (&ThreadPool::threadEntry, this, i));
    }

    ~ThreadPool ()
    {
        {
            // Unblock any threads and tell them to stop
            std::unique_lock <std::mutex> l (lock_);

            shutdown_ = true;
            condVar_.notify_all();
        }

        // Wait for all threads to stop
        std::cerr << "Joining threads" << std::endl;
        for (auto& thread : threads_)
            thread.join();
    }

    void doJob (std::function <void (void)> func)
    {
        // Place a job on the queu and unblock a thread
        std::unique_lock <std::mutex> l (lock_);

        jobs_.emplace (std::move (func));
        condVar_.notify_one();
    }

    protected:

    void threadEntry (int i)
    {
        std::function <void (void)> job;

        while (1)
        {
            {
                std::unique_lock <std::mutex> l (lock_);

                while (! shutdown_ && jobs_.empty())
                    condVar_.wait (l);

                if (jobs_.empty ())
                {
                    // No jobs to do and we are shutting down
                    std::cerr << "Thread " << i << " terminates" << std::endl;
                    return;
                 }

                std::cerr << "Thread " << i << " does a job" << std::endl;
                job = std::move (jobs_.front ());
                jobs_.pop();
            }

            // Do the job without holding any locks
            job ();
        }

    }

    std::mutex lock_;
    std::condition_variable condVar_;
    bool shutdown_;
    std::queue <std::function <void (void)>> jobs_;
    std::vector <std::thread> threads_;
};

void silly (int n)
{
    // A silly job for demonstration purposes
    std::cerr << "Sleeping for " << n << " seconds" << std::endl;
    std::this_thread::sleep_for (std::chrono::seconds (n));
}

int main()
{
    // Create two threads
    ThreadPool p (2);

    // Assign them 4 jobs
    p.doJob (std::bind (silly, 1));
    p.doJob (std::bind (silly, 2));
    p.doJob (std::bind (silly, 3));
    p.doJob (std::bind (silly, 4));
}

The std::thread class is designed to execute exactly one task (the one you give it in the constructor) and then end. If you want to do more work, you'll need a new thread. As of C++11, that's all we have. Thread pools didn't make it into the standard. (I'm uncertain what C++14 has to say about them.)

Fortunately, you can easily implement the required logic yourself. Here is the large-scale picture:

  • Start n worker threads that all do the following:
    • Repeat while there is more work to do:
      • Grab the next task t (possibly waiting until one becomes ready).
      • Process t.
  • Keep inserting new tasks in the processing queue.
  • Tell the worker threads that there is nothing more to do.
  • Wait for the worker threads to finish.

The most difficult part here (which is still fairly easy) is properly designing the work queue. Usually, a synchronized linked list (from the STL) will do for this. Synchronized means that any thread that wishes to manipulate the queue must only do so after it has acquired a std::mutex so to avoid race conditions. If a worker thread finds the list empty, it has to wait until there is some work again. You can use a std::condition_variable for this. Each time a new task is inserted into the queue, the inserting thread notifies a thread that waits on the condition variable and will therefore stop blocking and eventually start processing the new task.

The second not-so-trivial part is how to signal to the worker threads that there is no more work to do. Clearly, you can set some global flag but if a worker is blocked waiting at the queue, it won't realize any time soon. One solution could be to notify_all() threads and have them check the flag each time they are notified. Another option is to insert some distinct “toxic” item into the queue. If a worker encounters this item, it quits itself.

Representing a queue of tasks is straight-forward using your self-defined task objects or simply lambdas.

All of the above are C++11 features. If you are stuck with an earlier version, you'll need to resort to third-party libraries that provide multi-threading for your particular platform.

While none of this is rocket science, it is still easy to get wrong the first time. And unfortunately, concurrency-related bugs are among the most difficult to debug. Starting by spending a few hours reading through the relevant sections of a good book or working through a tutorial can quickly pay off.