How can I match fuzzy match strings from two datasets?
Here is a solution using the fuzzyjoin
package. It uses dplyr
-like syntax and stringdist
as one of the possible types of fuzzy matching.
As suggested by @C8H10N4O2, the stringdist
method="jw" creates the best matches for your example.
As suggested by @dgrtwo, the developer of fuzzyjoin
, I used a large max_dist
and then used dplyr::group_by
and dplyr::slice_min
to get only the best match with minimum distance. (slice_min
replaces the older top_n
and if the original order is important and not alphabetical, use mutate(rank = row_number(dist)) %>% filter(rank == 1)
)
a <- data.frame(name = c('Ace Co', 'Bayes', 'asd', 'Bcy', 'Baes', 'Bays'),
price = c(10, 13, 2, 1, 15, 1))
b <- data.frame(name = c('Ace Co.', 'Bayes Inc.', 'asdf'),
qty = c(9, 99, 10))
library(fuzzyjoin); library(dplyr);
stringdist_join(a, b,
by = "name",
mode = "left",
ignore_case = FALSE,
method = "jw",
max_dist = 99,
distance_col = "dist") %>%
group_by(name.x) %>%
slice_min(order_by = dist, n = 1)
#> # A tibble: 6 x 5
#> # Groups: name.x [6]
#> name.x price name.y qty dist
#> <fctr> <dbl> <fctr> <dbl> <dbl>
#> 1 Ace Co 10 Ace Co. 9 0.04761905
#> 2 Bayes 13 Bayes Inc. 99 0.16666667
#> 3 asd 2 asdf 10 0.08333333
#> 4 Bcy 1 Bayes Inc. 99 0.37777778
#> 5 Baes 15 Bayes Inc. 99 0.20000000
#> 6 Bays 1 Bayes Inc. 99 0.20000000
The solution depends on the desired cardinality of your matching a
to b
. If it's one-to-one, you will get the three closest matches above. If it's many-to-one, you will get six.
One-to-one case (requires assignment algorithm):
When I've had to do this before I treat it as an assignment problem with a distance matrix and an assignment heuristic (greedy assignment used below). If you want an "optimal" solution you'd be better off with optim
.
Not familiar with AGREP but here's example using stringdist
for your distance matrix.
library(stringdist)
d <- expand.grid(a$name,b$name) # Distance matrix in long form
names(d) <- c("a_name","b_name")
d$dist <- stringdist(d$a_name,d$b_name, method="jw") # String edit distance (use your favorite function here)
# Greedy assignment heuristic (Your favorite heuristic here)
greedyAssign <- function(a,b,d){
x <- numeric(length(a)) # assgn variable: 0 for unassigned but assignable,
# 1 for already assigned, -1 for unassigned and unassignable
while(any(x==0)){
min_d <- min(d[x==0]) # identify closest pair, arbitrarily selecting 1st if multiple pairs
a_sel <- a[d==min_d & x==0][1]
b_sel <- b[d==min_d & a == a_sel & x==0][1]
x[a==a_sel & b == b_sel] <- 1
x[x==0 & (a==a_sel|b==b_sel)] <- -1
}
cbind(a=a[x==1],b=b[x==1],d=d[x==1])
}
data.frame(greedyAssign(as.character(d$a_name),as.character(d$b_name),d$dist))
Produces the assignment:
a b d
1 Ace Co Ace Co. 0.04762
2 Bayes Bayes Inc. 0.16667
3 asd asdf 0.08333
I'm sure there's a much more elegant way to do the greedy assignment heuristic, but the above works for me.
Many-to-one case (not an assignment problem):
do.call(rbind, unname(by(d, d$a_name, function(x) x[x$dist == min(x$dist),])))
Produces the result:
a_name b_name dist
1 Ace Co Ace Co. 0.04762
11 Baes Bayes Inc. 0.20000
8 Bayes Bayes Inc. 0.16667
12 Bays Bayes Inc. 0.20000
10 Bcy Bayes Inc. 0.37778
15 asd asdf 0.08333
Edit: use method="jw"
to produce desired results. See help("stringdist-package")
I am not sure if this is a useful direction for you, John Andrews, but it gives you another tool (from the RecordLinkage
package) and might help.
install.packages("ipred")
install.packages("evd")
install.packages("RSQLite")
install.packages("ff")
install.packages("ffbase")
install.packages("ada")
install.packages("~/RecordLinkage_0.4-1.tar.gz", repos = NULL, type = "source")
require(RecordLinkage) # it is not on CRAN so you must load source from Github, and there are 7 dependent packages, as per above
compareJW <- function(string, vec, cutoff) {
require(RecordLinkage)
jarowinkler(string, vec) > cutoff
}
a<-data.frame(name=c('Ace Co','Bayes', 'asd', 'Bcy', 'Baes', 'Bays'),price=c(10,13,2,1,15,1))
b<-data.frame(name=c('Ace Co.','Bayes Inc.','asdf'),qty=c(9,99,10))
a$name <- as.character(a$name)
b$name <- as.character(b$name)
test <- compareJW(string = a$name, vec = b$name, cutoff = 0.8) # pick your level of cutoff, of course
data.frame(name = a$name, price = a$price, test = test)
> data.frame(name = a$name, price = a$price, test = test)
name price test
1 Ace Co 10 TRUE
2 Bayes 13 TRUE
3 asd 2 TRUE
4 Bcy 1 FALSE
5 Baes 15 TRUE
6 Bays 1 FALSE
Agreed with above answer "Not familiar with AGREP but here's example using stringdist for your distance matrix." but add-on the signature function as below from Merging Data Sets Based on Partially Matched Data Elements will be more accurate since the calculation of LV is based on position/addition/deletion
##Here's where the algorithm starts...
##I'm going to generate a signature from country names to reduce some of the minor differences between strings
##In this case, convert all characters to lower case, sort the words alphabetically, and then concatenate them with no spaces.
##So for example, United Kingdom would become kingdomunited
##We might also remove stopwords such as 'the' and 'of'.
signature=function(x){
sig=paste(sort(unlist(strsplit(tolower(x)," "))),collapse='')
return(sig)
}
I use lapply
for those circumstances:
yournewvector: lapply(yourvector$yourvariable, agrep, yourothervector$yourothervariable, max.distance=0.01),
then to write it as a csv it's not so straightforward:
write.csv(matrix(yournewvector, ncol=1), file="yournewvector.csv", row.names=FALSE)