How to count the NaN values in a column in pandas DataFrame

You can use the isna() method (or it's alias isnull() which is also compatible with older pandas versions < 0.21.0) and then sum to count the NaN values. For one column:

In [1]: s = pd.Series([1,2,3, np.nan, np.nan])

In [4]: s.isna().sum()   # or s.isnull().sum() for older pandas versions
Out[4]: 2

For several columns, it also works:

In [5]: df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

In [6]: df.isna().sum()
Out[6]:
a    1
b    2
dtype: int64

Lets assume df is a pandas DataFrame.

Then,

df.isnull().sum(axis = 0)

This will give number of NaN values in every column.

If you need, NaN values in every row,

df.isnull().sum(axis = 1)

You could subtract the total length from the count of non-nan values:

count_nan = len(df) - df.count()

You should time it on your data. For small Series got a 3x speed up in comparison with the isnull solution.


Based on the most voted answer we can easily define a function that gives us a dataframe to preview the missing values and the % of missing values in each column:

def missing_values_table(df):
    mis_val = df.isnull().sum()
    mis_val_percent = 100 * df.isnull().sum() / len(df)
    mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
    mis_val_table_ren_columns = mis_val_table.rename(
    columns = {0 : 'Missing Values', 1 : '% of Total Values'})
    mis_val_table_ren_columns = mis_val_table_ren_columns[
        mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
    '% of Total Values', ascending=False).round(1)
    print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
        "There are " + str(mis_val_table_ren_columns.shape[0]) +
            " columns that have missing values.")
    return mis_val_table_ren_columns

Since pandas 0.14.1 my suggestion here to have a keyword argument in the value_counts method has been implemented:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64