Derive Fourier transform of sinc function

Solution 1:

Since sinc is an entire function and decays with $1/\omega$, we can slightly shift the contour of integration in the inverse transform, and since there's no longer a singularity then, we can split the integral in two:

$$\begin{eqnarray}\int_{-\infty}^\infty e^{i\omega x}\frac{e^{i\omega/2}-e^{-i\omega/2}}{i\omega}\mathrm{d}\omega &=& \int_{-\infty+\epsilon i}^{\infty+\epsilon i} e^{i\omega x}\frac{e^{i\omega/2}-e^{-i\omega/2}}{i\omega}\mathrm{d}\omega\\\ &=& \int_{-\infty+\epsilon i}^{\infty+\epsilon i} e^{i\omega x}\frac{e^{i\omega/2}}{i\omega}\mathrm{d}\omega - \int_{-\infty+\epsilon i}^{\infty+\epsilon i} e^{i\omega x}\frac{e^{-i\omega/2}}{i\omega}\mathrm{d}\omega\;. \end{eqnarray}$$

Now we can apply different substitutions to the two parts, $\omega'=\omega(x+\frac{1}{2})$ in the first part and $\omega'=\omega(x-\frac{1}{2})$ in the second part. That transforms the integrand into $e^{i\omega'}/(i\omega')$ in both cases. Now if $x$ lies outside the rectangle, the signs of the factors in the substitutions are the same, so the two integrals stay on the same side of the origin and go in the same direction, and hence yield the same value and cancel to $0$. But if $x$ lies inside the rectangle, then there's a sign change due to $x-\frac{1}{2}$ but not due to $x+\frac{1}{2}$, so we get

$$\int_{-\infty+\epsilon i}^{\infty+\epsilon i} \frac{e^{i\omega'}}{i\omega'}\mathrm{d}\omega' + \int_{\infty-\epsilon i}^{-\infty-\epsilon i} \frac{e^{i\omega'}}{i\omega'}\mathrm{d}\omega'\;,$$

which is (again using the sufficient decay at infinity)

$$\oint \frac{e^{i\omega'}}{i\omega'}\mathrm{d}\omega'$$

on a contour that encloses the pole at the origin, and hence the value is $2\pi$.

Solution 2:

I think you can have a look at this post: http://eagle.lamost.org/?p=38679

Every steps for the Fourier Transform is clearly shown.

Solution 3:

$\newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{{\rm e}^{#1}}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\pp}{{\cal P}}% \newcommand{\sgn}{{\rm sgn}}% \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}$

Following @Juha-Matti Vihtanen definition of ${\rm sinc}\pars{t}$: \begin{align} \int_{-\infty}^{\infty}{\rm sinc}\left(t\right)\,\expo{\ic\omega t}\,\dd t &= \int_{-\infty}^{\infty}\pars{% {1 \over 2}\int_{-1}^{1}\expo{\ic\nu\pars{\pi t}}\,\dd\nu} \expo{\ic\omega t}\,\,\dd t = \pi\int_{-1}^{1}\dd\nu\int_{-\infty}^{\infty} \expo{\ic\pars{\omega + \nu\pi}t}\,{\dd t \over 2\pi} \\[3mm]&= \pi\int_{-1}^{1}\delta\pars{\omega + \nu\pi}\,\dd\nu = \pi\int_{-1}^{1}{\delta\pars{\nu - \bracks{-\omega/\pi}} \over \pi}\,\dd\nu = \Theta\pars{1 - \verts{\,-\,{\omega \over \pi}}} \\[1cm]& \end{align}

$$\color{#ff0000}{\Large% \int_{-\infty}^{\infty}{\rm sinc}\left(t\right)\,\expo{\ic\omega t}\,\dd t \color{#000000}{\Large\ =\ } \Theta\pars{\pi - \verts{\omega}}} $$