On convergence of Bertrand series $\sum\limits_{n=2}^{\infty} \frac{1}{n^{\alpha}\ln^{\beta}(n)}$ where $\alpha, \beta \in \mathbb{R}$
In that last case it diverges those are Bertrand's series see here: indeed we have
$$\frac{1}{n^{\alpha/2}\ln^\beta n} =\left[\frac{1}{\frac{2\beta}{\alpha}n^{\alpha/2\beta}\ln n^{\alpha/2\beta}}\right]^{\beta}\to \left[\frac{1}{\frac{2\beta}{\alpha}0^-}\right]^{\beta} =\infty $$
Since if $\alpha<0$ and $\beta>0$ then, $$ \lim_{n\to\infty}n^{\alpha/2\beta}=0\implies \lim_{n\to\infty}n^{\alpha/2\beta}\ln n^{\alpha/2\beta} =0^-$$
Then there exists $N$ such that $n>N$ we have
$$\frac{1}{n^{\alpha/2}\ln^\beta n}>1\implies \frac{1}{n^{\alpha}\ln^\beta n}>n^{-\alpha/2}$$ That is $$\sum_{n=N}^{\infty}\frac{1}{n^{\alpha}\ln^\beta n}>\sum_{n=N}^{\infty}n^{-\alpha/2} =\infty$$ from this you get the divergence