Get OS-level system information
Solution 1:
You can get some limited memory information from the Runtime class. It really isn't exactly what you are looking for, but I thought I would provide it for the sake of completeness. Here is a small example. Edit: You can also get disk usage information from the java.io.File class. The disk space usage stuff requires Java 1.6 or higher.
public class Main {
public static void main(String[] args) {
/* Total number of processors or cores available to the JVM */
System.out.println("Available processors (cores): " +
Runtime.getRuntime().availableProcessors());
/* Total amount of free memory available to the JVM */
System.out.println("Free memory (bytes): " +
Runtime.getRuntime().freeMemory());
/* This will return Long.MAX_VALUE if there is no preset limit */
long maxMemory = Runtime.getRuntime().maxMemory();
/* Maximum amount of memory the JVM will attempt to use */
System.out.println("Maximum memory (bytes): " +
(maxMemory == Long.MAX_VALUE ? "no limit" : maxMemory));
/* Total memory currently available to the JVM */
System.out.println("Total memory available to JVM (bytes): " +
Runtime.getRuntime().totalMemory());
/* Get a list of all filesystem roots on this system */
File[] roots = File.listRoots();
/* For each filesystem root, print some info */
for (File root : roots) {
System.out.println("File system root: " + root.getAbsolutePath());
System.out.println("Total space (bytes): " + root.getTotalSpace());
System.out.println("Free space (bytes): " + root.getFreeSpace());
System.out.println("Usable space (bytes): " + root.getUsableSpace());
}
}
}
Solution 2:
The java.lang.management package does give you a whole lot more info than Runtime - for example it will give you heap memory (ManagementFactory.getMemoryMXBean().getHeapMemoryUsage()
) separate from non-heap memory (ManagementFactory.getMemoryMXBean().getNonHeapMemoryUsage()
).
You can also get process CPU usage (without writing your own JNI code), but you need to cast the java.lang.management.OperatingSystemMXBean
to a com.sun.management.OperatingSystemMXBean
. This works on Windows and Linux, I haven't tested it elsewhere.
For example ... call the get getCpuUsage() method more frequently to get more accurate readings.
public class PerformanceMonitor {
private int availableProcessors = getOperatingSystemMXBean().getAvailableProcessors();
private long lastSystemTime = 0;
private long lastProcessCpuTime = 0;
public synchronized double getCpuUsage()
{
if ( lastSystemTime == 0 )
{
baselineCounters();
return;
}
long systemTime = System.nanoTime();
long processCpuTime = 0;
if ( getOperatingSystemMXBean() instanceof OperatingSystemMXBean )
{
processCpuTime = ( (OperatingSystemMXBean) getOperatingSystemMXBean() ).getProcessCpuTime();
}
double cpuUsage = (double) ( processCpuTime - lastProcessCpuTime ) / ( systemTime - lastSystemTime );
lastSystemTime = systemTime;
lastProcessCpuTime = processCpuTime;
return cpuUsage / availableProcessors;
}
private void baselineCounters()
{
lastSystemTime = System.nanoTime();
if ( getOperatingSystemMXBean() instanceof OperatingSystemMXBean )
{
lastProcessCpuTime = ( (OperatingSystemMXBean) getOperatingSystemMXBean() ).getProcessCpuTime();
}
}
}
Solution 3:
I think the best method out there is to implement the SIGAR API by Hyperic. It works for most of the major operating systems ( darn near anything modern ) and is very easy to work with. The developer(s) are very responsive on their forum and mailing lists. I also like that it is GPL2 Apache licensed. They provide a ton of examples in Java too!
SIGAR == System Information, Gathering And Reporting tool.
Solution 4:
There's a Java project that uses JNA (so no native libraries to install) and is in active development. It currently supports Linux, OSX, Windows, Solaris and FreeBSD and provides RAM, CPU, Battery and file system information.
- https://github.com/oshi/oshi
Solution 5:
For windows I went this way.
com.sun.management.OperatingSystemMXBean os = (com.sun.management.OperatingSystemMXBean) ManagementFactory.getOperatingSystemMXBean();
long physicalMemorySize = os.getTotalPhysicalMemorySize();
long freePhysicalMemory = os.getFreePhysicalMemorySize();
long freeSwapSize = os.getFreeSwapSpaceSize();
long commitedVirtualMemorySize = os.getCommittedVirtualMemorySize();
Here is the link with details.