Week of a month pandas
I'm trying to get week on a month, some months might have four weeks some might have five. For each date i would like to know to which week does it belongs to. I'm mostly interested in the last week of the month.
data = pd.DataFrame(pd.date_range(' 1/ 1/ 2000', periods = 100, freq ='D'))
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
See this answer and decide which week of month you want.
There's nothing built-in, so you'll need to calculate it with apply. For example, for an easy 'how many 7 day periods have passed' measure.
data['wom'] = data[0].apply(lambda d: (d.day-1) // 7 + 1)
For a more complicated (based on the calender), using the function from that answer.
import datetime
import calendar
def week_of_month(tgtdate):
tgtdate = tgtdate.to_datetime()
days_this_month = calendar.mdays[tgtdate.month]
for i in range(1, days_this_month):
d = datetime.datetime(tgtdate.year, tgtdate.month, i)
if d.day - d.weekday() > 0:
startdate = d
break
# now we canuse the modulo 7 appraoch
return (tgtdate - startdate).days //7 + 1
data['calendar_wom'] = data[0].apply(week_of_month)
I've used the code below when dealing with dataframes that have a datetime index.
import pandas as pd
import math
def add_week_of_month(df):
df['week_in_month'] = pd.to_numeric(df.index.day/7)
df['week_in_month'] = df['week_in_month'].apply(lambda x: math.ceil(x))
return df
If you run this example:
df = test = pd.DataFrame({'count':['a','b','c','d','e']},
index = ['2018-01-01', '2018-01-08','2018-01-31','2018-02-01','2018-02-28'])
df.index = pd.to_datetime(df.index)
you should get the following dataframe
count week_in_month
2018-01-01 a 1
2018-01-08 b 2
2018-01-31 c 5
2018-02-01 d 1
2018-02-28 e 4
TL;DR
import pandas as pd
def weekinmonth(dates):
"""Get week number in a month.
Parameters:
dates (pd.Series): Series of dates.
Returns:
pd.Series: Week number in a month.
"""
firstday_in_month = dates - pd.to_timedelta(dates.dt.day - 1, unit='d')
return (dates.dt.day-1 + firstday_in_month.dt.weekday) // 7 + 1
df = pd.DataFrame(pd.date_range(' 1/ 1/ 2000', periods = 100, freq ='D'), columns=['Date'])
weekinmonth(df['Date'])
0 1
1 1
2 2
3 2
4 2
..
95 2
96 2
97 2
98 2
99 2
Name: Date, Length: 100, dtype: int64
Explanation
At first, calculate first day in month (from this answer: How floor a date to the first date of that month?):
df = pd.DataFrame(pd.date_range(' 1/ 1/ 2000', periods = 100, freq ='D'), columns=['Date'])
df['MonthFirstDay'] = df['Date'] - pd.to_timedelta(df['Date'].dt.day - 1, unit='d')
df
Date MonthFirstDay
0 2000-01-01 2000-01-01
1 2000-01-02 2000-01-01
2 2000-01-03 2000-01-01
3 2000-01-04 2000-01-01
4 2000-01-05 2000-01-01
.. ... ...
95 2000-04-05 2000-04-01
96 2000-04-06 2000-04-01
97 2000-04-07 2000-04-01
98 2000-04-08 2000-04-01
99 2000-04-09 2000-04-01
[100 rows x 2 columns]
Obtain weekday from first day:
df['FirstWeekday'] = df['MonthFirstDay'].dt.weekday
df
Date MonthFirstDay FirstWeekday
0 2000-01-01 2000-01-01 5
1 2000-01-02 2000-01-01 5
2 2000-01-03 2000-01-01 5
3 2000-01-04 2000-01-01 5
4 2000-01-05 2000-01-01 5
.. ... ... ...
95 2000-04-05 2000-04-01 5
96 2000-04-06 2000-04-01 5
97 2000-04-07 2000-04-01 5
98 2000-04-08 2000-04-01 5
99 2000-04-09 2000-04-01 5
[100 rows x 3 columns]
Now I can calculate with modulo of weekdays to obtain the week number in a month:
- Get day of the month by
df['Date'].dt.day
and make sure that begins with 0 due to modulo calculationdf['Date'].dt.day-1
. - Add weekday number to make sure which day of month starts
+ df['FirstWeekday']
- Be safe to use the integer division of 7 days in a week and add 1 to start week number in month from 1
// 7 + 1
.
Whole modulo calculation:
df['WeekInMonth'] = (df['Date'].dt.day-1 + df['FirstWeekday']) // 7 + 1
df
Date MonthFirstDay FirstWeekday WeekInMonth
0 2000-01-01 2000-01-01 5 1
1 2000-01-02 2000-01-01 5 1
2 2000-01-03 2000-01-01 5 2
3 2000-01-04 2000-01-01 5 2
4 2000-01-05 2000-01-01 5 2
.. ... ... ... ...
95 2000-04-05 2000-04-01 5 2
96 2000-04-06 2000-04-01 5 2
97 2000-04-07 2000-04-01 5 2
98 2000-04-08 2000-04-01 5 2
99 2000-04-09 2000-04-01 5 2
[100 rows x 4 columns]
This seems to do the trick for me
df_dates = pd.DataFrame({'date':pd.bdate_range(df['date'].min(),df['date'].max())})
df_dates_tues = df_dates[df_dates['date'].dt.weekday==2].copy()
df_dates_tues['week']=np.mod(df_dates_tues['date'].dt.strftime('%W').astype(int),4)