Do the real numbers and the complex numbers have the same cardinality?

Yes.

$$|\mathbb R|=2^{\aleph_0}; |\mathbb C|=|\mathbb{R\times R}|=|\mathbb R|^2.$$

We have if so:

$$|\mathbb C|=|\mathbb R|^2 =(2^{\aleph_0})^2 = 2^{\aleph_0\cdot 2}=2^{\aleph_0}=|\mathbb R|$$

If one wishes to write down an explicit function, one can use a function of $\mathbb{N\times 2\to N}$, and combine it with a bijection between $2^\mathbb N$ and $\mathbb R$.


Of course. I will show it on numbers in $[0,1)$ and $[0,1)\times[0,1)$. Consider $z=x+iy$ with $x=0.x_1x_2x_3\ldots$ and $y=0.y_1y_2y_3\ldots$ their decimal expansions (the standard, greedy ones with no $9^\omega$ as a suffix). Then the number $f(z)=0.x_1y_1x_2y_2x_3y_3\ldots$ is real and this map is clearly injective on the above mentioned sets. Generalization to the whole $\mathbb C$ is straightforward. This gives $\#\mathbb C\leq\#\mathbb R$. the other way around is obvious.


Consult #4b in http://faculty.lasierra.edu/~jvanderw/classes/m415a03/hw8ans.pdf.

A straightforward bijection $B : \mathbb{R}^2 \rightarrow \mathbb{C}$ is: $B(a,b) = a + bi$. I omit the verification of injectivity and surjectivity. Then $|C| = |\mathbb{R}^2|$. The separate result that $|\mathbb{R}^k| = |\mathbb{R}| \; \forall \; k \in \mathbb{N}$ implies $|\mathbb{R}^2| = |\mathbb{R}|$. Altogether, $|\mathbb{C}| = |\mathbb{R}^2| = |\mathbb{R}|$.