Showing that $l_2$ norm is smaller than $l_1$
How can I show that $L_2\le L_1$
$||x||_1\ge ||x||_2$
and also we have that
$\|x\|_2\leq \sqrt m\|x\|_{\infty}$
regarding the first part, can I say that:
$$ \sqrt{\sum\limits_{i=1}^n x^2 } \leq {\sum\limits_{i=1}^n {\sqrt x}^2 } $$
Solution 1:
I assume you are using finite dimensional vector spaces (looks like a familiar question from Golub and Van Loan).
\begin{align} ||x||_2^{2}=\sum_{i=1}^{N}|x_i|^2\leq\left(\sum_{i=1}^{N}|x_i|^2+2\cdot\sum_{i,j,i\neq j}|x_i||x_j|\right)=||x||_1^2 \end{align}
This implies $||x||_2\leq ||x||_1$. Now \begin{align} ||x||_2^{2}=\sum_{i=1}^{N}|x_i|^2\leq N\cdot\max_{i}(|x_i|^2)=N||x||_{\infty}^{2} \end{align} This implies $||x||_2\leq \sqrt{N}||x||_{\infty}$
Solution 2:
In fact, we can do something stronger than this
$${\Vert a \Vert}_p = (\sum_{i=0}^n |a_i|^p)^{1/p} \le (\sum_{i=0}^{n-1} |a_i|^p)^{1/p} + |a_n^p|^{1/p} \le \cdots \le \sum_{i=0}^n |a_i| = {\Vert a \Vert}_1$$
Where each inequality is using the Minkowski inequality. Moreover, we can generalize this idea further to show
$${\Vert * \Vert}_q \le {\Vert * \Vert}_p \text{ whenever } p\le q$$
It is a good exercise.
Solution 3:
This is a short proof to show that any vector norm is less than or equal to 1-norm.
According to Minkowski Inequality,
$$\|f+g\|_p\le\|f\|_p+\|g\|_p$$
$\|a\|_p=$($\sum_{i=0}^n |a_i|^p)^{1/p}\le (\sum_{i=0}^{n-1} |a_i|^p)^{1/p} +(|a_n|^p)^{1/p}\\\le (\sum_{i=0}^{n-2} |a_i|^p)^{1/p} +(|a_{n-1}|^p)^{1/p} + (|a_n|^p)^{1/p} \\ ...\\...\\ \le(|a_1|^p)^{1/p} +(|a_2|^p)^{1/p} +....+ (|a_n|^p)^{1/p}\\=|a_1| +|a_2| +....+ |a_n| = \|a\|_1 \\ $
$\implies\|a\|_p\le \|a\|_1$ for any $ p\gt1$