How to prove that for any complex number $z$ which is not equal to $\pi k + \frac{\pi}{2}$ ($k\in\mathbb Z$) : $$ \tan z = \sum_{n=0}^\infty \frac{8z}{(2n+1)^2\pi^2 - 4z^2} $$ Using complex analysis, I started with the contour intergal $$ \oint_{C_N} \frac{\tan \frac{\pi s}{2}}{s^2-z^2}\,\mathrm ds = \sum_{n=-N}^N \frac{-4i}{(2n+1)^2 - z^2} + \frac{2\pi i \tan \frac{\pi z}{2}}{z}$$ where $C_N$ is the circle centered at 0 of radius $N+1/2$ ($N\in\mathbb N$).
The complex number $z$ is chosen to be non zero & non odd integer.

However, I don't know how proceed to show that the LHS goes to $0$ as $N\to \infty$ :(

Thanks in advance for answers.


$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

You can use the Mittag-Leffler Expansion:

$\ds{\tan\pars{z}}$ has single poles at $\ds{p_{n} = \pars{2n + 1}{\pi \over 2}}$, with residues $\ds{r_{n} = -1}$, where $\ds{n \in \mathbb{Z}}$ .

$$ \bbx{\mbox{Note that}\quad p_{-n} = -p_{n - 1}} $$


Then, \begin{align} \tan\pars{z} & = \sum_{n = -\infty}^{\infty}\pars{-1}\pars{{1 \over z - p_{n}} + {1 \over p_{n}}} = \sum_{n = 1}^{\infty}\bracks{% \pars{{1 \over p_{n} - z} - {1 \over p_{n}}} + \pars{{1 \over p_{-n} - z} - {1 \over p_{-n}}}} \\[2mm] & + \pars{{1 \over p_{0} - z} - {1 \over p_{0}}} \\[5mm] & = \lim_{N \to \infty}\sum_{n = 1}^{N}\bracks{% \pars{{1 \over p_{n} - z} - {1 \over p_{n}}} + \pars{{1 \over -p_{n - 1} - z} + {1 \over p_{n - 1}}}} + \pars{{1 \over p_{0} - z} - {1 \over p_{0}}} \\[5mm] & = \lim_{N \to \infty}\bracks{\pars{{1 \over p_{0} - z} - {1 \over p_{0}}} + \sum_{n = 1}^{N}\pars{{1 \over p_{n} - z} - {1 \over p_{n}}} + \sum_{n = 1}^{N}\pars{{1 \over -p_{n - 1} - z} + {1 \over p_{n - 1}}}} \\[5mm] & = \lim_{N \to \infty}\bracks{\sum_{n = 0}^{N - 1} \pars{{1 \over p_{n} - z} - {1 \over p_{n}}} + \pars{{1 \over p_{N} - z} - {1 \over p_{N}}} + \sum_{n = 0}^{N - 1}\pars{-\,{1 \over p_{n} - z} + {1 \over p_{n}}}} \\[5mm] & = \sum_{n = 0}^{\infty}\pars{{1 \over p_{n} - z} - {1 \over p_{n} + z}} = \sum_{n = 0}^{\infty}{2z \over p_{n}^{2} - z^{2}} = \sum_{n = 0}^{\infty}{8z \over \pars{2p_{n}}^{2} - 4z^{2}} \\[5mm] & = \bbx{\sum_{n = 0}^{\infty}{8z \over \pars{2n + 1}^{2}\pi^{2} - 4z^{2}}} \end{align}