Evaluating a mathematical expression in a string
stringExp = "2^4"
intVal = int(stringExp) # Expected value: 16
This returns the following error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()
with base 10: '2^4'
I know that eval
can work around this, but isn't there a better and - more importantly - safer method to evaluate a mathematical expression that is being stored in a string?
Solution 1:
eval
is evil
eval("__import__('os').remove('important file')") # arbitrary commands
eval("9**9**9**9**9**9**9**9", {'__builtins__': None}) # CPU, memory
Note: even if you use set __builtins__
to None
it still might be possible to break out using introspection:
eval('(1).__class__.__bases__[0].__subclasses__()', {'__builtins__': None})
Evaluate arithmetic expression using ast
import ast
import operator as op
# supported operators
operators = {ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul,
ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor,
ast.USub: op.neg}
def eval_expr(expr):
"""
>>> eval_expr('2^6')
4
>>> eval_expr('2**6')
64
>>> eval_expr('1 + 2*3**(4^5) / (6 + -7)')
-5.0
"""
return eval_(ast.parse(expr, mode='eval').body)
def eval_(node):
if isinstance(node, ast.Num): # <number>
return node.n
elif isinstance(node, ast.BinOp): # <left> <operator> <right>
return operators[type(node.op)](eval_(node.left), eval_(node.right))
elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
return operators[type(node.op)](eval_(node.operand))
else:
raise TypeError(node)
You can easily limit allowed range for each operation or any intermediate result, e.g., to limit input arguments for a**b
:
def power(a, b):
if any(abs(n) > 100 for n in [a, b]):
raise ValueError((a,b))
return op.pow(a, b)
operators[ast.Pow] = power
Or to limit magnitude of intermediate results:
import functools
def limit(max_=None):
"""Return decorator that limits allowed returned values."""
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
ret = func(*args, **kwargs)
try:
mag = abs(ret)
except TypeError:
pass # not applicable
else:
if mag > max_:
raise ValueError(ret)
return ret
return wrapper
return decorator
eval_ = limit(max_=10**100)(eval_)
Example
>>> evil = "__import__('os').remove('important file')"
>>> eval_expr(evil) #doctest:+IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError:
>>> eval_expr("9**9")
387420489
>>> eval_expr("9**9**9**9**9**9**9**9") #doctest:+IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError:
Solution 2:
Pyparsing can be used to parse mathematical expressions. In particular, fourFn.py shows how to parse basic arithmetic expressions. Below, I've rewrapped fourFn into a numeric parser class for easier reuse.
from __future__ import division
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional,
ZeroOrMore, Forward, nums, alphas, oneOf)
import math
import operator
__author__ = 'Paul McGuire'
__version__ = '$Revision: 0.0 $'
__date__ = '$Date: 2009-03-20 $'
__source__ = '''http://pyparsing.wikispaces.com/file/view/fourFn.py
http://pyparsing.wikispaces.com/message/view/home/15549426
'''
__note__ = '''
All I've done is rewrap Paul McGuire's fourFn.py as a class, so I can use it
more easily in other places.
'''
class NumericStringParser(object):
'''
Most of this code comes from the fourFn.py pyparsing example
'''
def pushFirst(self, strg, loc, toks):
self.exprStack.append(toks[0])
def pushUMinus(self, strg, loc, toks):
if toks and toks[0] == '-':
self.exprStack.append('unary -')
def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal(".")
e = CaselessLiteral("E")
fnumber = Combine(Word("+-" + nums, nums) +
Optional(point + Optional(Word(nums))) +
Optional(e + Word("+-" + nums, nums)))
ident = Word(alphas, alphas + nums + "_$")
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div
expop = Literal("^")
pi = CaselessLiteral("PI")
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
).setParseAction(self.pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of
# "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-right
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + \
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
term = factor + \
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
expr << term + \
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
# addop_term = ( addop + term ).setParseAction( self.pushFirst )
# general_term = term + ZeroOrMore( addop_term ) | OneOrMore( addop_term)
# expr << general_term
self.bnf = expr
# map operator symbols to corresponding arithmetic operations
epsilon = 1e-12
self.opn = {"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.truediv,
"^": operator.pow}
self.fn = {"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"exp": math.exp,
"abs": abs,
"trunc": lambda a: int(a),
"round": round,
"sgn": lambda a: abs(a) > epsilon and cmp(a, 0) or 0}
def evaluateStack(self, s):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack(s)
if op in "+-*/^":
op2 = self.evaluateStack(s)
op1 = self.evaluateStack(s)
return self.opn[op](op1, op2)
elif op == "PI":
return math.pi # 3.1415926535
elif op == "E":
return math.e # 2.718281828
elif op in self.fn:
return self.fn[op](self.evaluateStack(s))
elif op[0].isalpha():
return 0
else:
return float(op)
def eval(self, num_string, parseAll=True):
self.exprStack = []
results = self.bnf.parseString(num_string, parseAll)
val = self.evaluateStack(self.exprStack[:])
return val
You can use it like this
nsp = NumericStringParser()
result = nsp.eval('2^4')
print(result)
# 16.0
result = nsp.eval('exp(2^4)')
print(result)
# 8886110.520507872
Solution 3:
Some safer alternatives to eval()
and sympy.sympify().evalf()
*:
- asteval
- numexpr
*SymPy sympify
is also unsafe according to the following warning from the documentation.
Warning: Note that this function uses
eval
, and thus shouldn’t be used on unsanitized input.
Solution 4:
Okay, so the problem with eval is that it can escape its sandbox too easily, even if you get rid of __builtins__
. All the methods for escaping the sandbox come down to using getattr
or object.__getattribute__
(via the .
operator) to obtain a reference to some dangerous object via some allowed object (''.__class__.__bases__[0].__subclasses__
or similar). getattr
is eliminated by setting __builtins__
to None
. object.__getattribute__
is the difficult one, since it cannot simply be removed, both because object
is immutable and because removing it would break everything. However, __getattribute__
is only accessible via the .
operator, so purging that from your input is sufficient to ensure eval cannot escape its sandbox.
In processing formulas, the only valid use of a decimal is when it is preceded or followed by [0-9]
, so we just remove all other instances of .
.
import re
inp = re.sub(r"\.(?![0-9])","", inp)
val = eval(inp, {'__builtins__':None})
Note that while python normally treats 1 + 1.
as 1 + 1.0
, this will remove the trailing .
and leave you with 1 + 1
. You could add )
,, and
EOF
to the list of things allowed to follow .
, but why bother?