sorting by a custom list in pandas
After reading through: http://pandas.pydata.org/pandas-docs/version/0.13.1/generated/pandas.DataFrame.sort.html
I still can't seem to figure out how to sort a column by a custom list. Obviously, the default sort is alphabetical. I'll give an example. Here is my (very abridged) dataframe:
Player Year Age Tm G
2967 Cedric Hunter 1991 27 CHH 6
5335 Maurice Baker 2004 25 VAN 7
13950 Ratko Varda 2001 22 TOT 60
6141 Ryan Bowen 2009 34 OKC 52
6169 Adrian Caldwell 1997 31 DAL 81
I want to be able to sort by Player, Year and then Tm. The default sort by Player and Year is fine for me, in normal order. However, I do not want Team sorted alphabetically b/c I want TOT always at the top.
Here is the list I created:
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL', 'DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN',
'WAS', 'WSB']
After reading through the link above, I thought this would work but it didn't:
df.sort(['Player', 'Year', 'Tm'], ascending = [True, True, sorter])
It still has ATL at the top, meaning that it sorted alphabetically and not according to my custom list. Any help would really be greatly appreciated, I just can't figure this out.
I just discovered that with pandas 15.1 it is possible to use categorical series (http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html#categoricals)
As for your example, lets define the same data-frame and sorter:
import pandas as pd
data = {
'id': [2967, 5335, 13950, 6141, 6169],
'Player': ['Cedric Hunter', 'Maurice Baker',
'Ratko Varda' ,'Ryan Bowen' ,'Adrian Caldwell'],
'Year': [1991, 2004, 2001, 2009, 1997],
'Age': [27, 25, 22, 34, 31],
'Tm': ['CHH', 'VAN', 'TOT', 'OKC', 'DAL'],
'G': [6, 7, 60, 52, 81]
}
# Create DataFrame
df = pd.DataFrame(data)
# Define the sorter
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL', 'DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN', 'WAS', 'WSB']
With the data-frame and sorter, which is a category-order, we can do the following in pandas 15.1:
# Convert Tm-column to category and in set the sorter as categories hierarchy
# Youc could also do both lines in one just appending the cat.set_categories()
df.Tm = df.Tm.astype("category")
df.Tm.cat.set_categories(sorter, inplace=True)
print(df.Tm)
Out[48]:
0 CHH
1 VAN
2 TOT
3 OKC
4 DAL
Name: Tm, dtype: category
Categories (38, object): [TOT < ATL < BOS < BRK ... UTA < VAN < WAS < WSB]
df.sort_values(["Tm"]) ## 'sort' changed to 'sort_values'
Out[49]:
Age G Player Tm Year id
2 22 60 Ratko Varda TOT 2001 13950
0 27 6 Cedric Hunter CHH 1991 2967
4 31 81 Adrian Caldwell DAL 1997 6169
3 34 52 Ryan Bowen OKC 2009 6141
1 25 7 Maurice Baker VAN 2004 5335
Below is an example that performs lexicographic sort on a dataframe. The idea is to create an numerical index based on the specific sort. Then to perform a numerical sort based on the index. A column is added to the dataframe to do so, and is then removed.
import pandas as pd
# Create DataFrame
df = pd.DataFrame(
{'id':[2967, 5335, 13950, 6141, 6169],
'Player': ['Cedric Hunter', 'Maurice Baker',
'Ratko Varda' ,'Ryan Bowen' ,'Adrian Caldwell'],
'Year': [1991, 2004, 2001, 2009, 1997],
'Age': [27, 25, 22, 34, 31],
'Tm': ['CHH' ,'VAN' ,'TOT' ,'OKC', 'DAL'],
'G': [6, 7, 60, 52, 81]})
# Define the sorter
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL','DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN',
'WAS', 'WSB']
# Create the dictionary that defines the order for sorting
sorterIndex = dict(zip(sorter, range(len(sorter))))
# Generate a rank column that will be used to sort
# the dataframe numerically
df['Tm_Rank'] = df['Tm'].map(sorterIndex)
# Here is the result asked with the lexicographic sort
# Result may be hard to analyze, so a second sorting is
# proposed next
## NOTE:
## Newer versions of pandas use 'sort_values' instead of 'sort'
df.sort_values(['Player', 'Year', 'Tm_Rank'],
ascending = [True, True, True], inplace = True)
df.drop('Tm_Rank', 1, inplace = True)
print(df)
# Here is an example where 'Tm' is sorted first, that will
# give the first row of the DataFrame df to contain TOT as 'Tm'
df['Tm_Rank'] = df['Tm'].map(sorterIndex)
## NOTE:
## Newer versions of pandas use 'sort_values' instead of 'sort'
df.sort_values(['Tm_Rank', 'Player', 'Year'],
ascending = [True , True, True], inplace = True)
df.drop('Tm_Rank', 1, inplace = True)
print(df)