Proof that $|\sin(nx)| \le n|\sin(x)|$ [duplicate]
Solution 1:
It is easy to see by induction. Keep the fact that, $|\cos x|\leq 1$. For $n=2$ $$|\sin(2x)| = |2\sin x \cos x|\leq 2|\sin x |$$
Assuming $|\sin(nx)| \leq n|\sin x|$ and using the addition formula we have
$$|\sin((n+1)x)| = |\sin nx ~\cos x +\sin x~ \cos nx|\\\overset{|\cos(\cdot)|\leq 1}{\leq}|\sin nx| + |\sin x| \overset{\text{by assumption}}{\leq}(n+1) |\sin x| .$$
For your worry
$$ |\sin(nx)| = |\int_0^{nx} \cos t\, dt\leq |nx|.$$
Solution 2:
You can use what you have already proved.
Apply it for "$x=nu$", then you get
$$\vert \sin(nu)\vert\leqslant \vert nu\vert=n\vert u\vert$$
since $n\geqslant 0$.
Edit.
For your new question, you should prove it by induction using the fact that
$$\vert a+b\vert \leqslant \vert a\vert+\vert b\vert.$$