adding dummy columns to the original dataframe
Solution 1:
In [77]: df = pd.concat([df, pd.get_dummies(df['YEAR'])], axis=1); df
Out[77]:
JOINED_CO GENDER EXEC_FULLNAME GVKEY YEAR CONAME BECAMECEO \
5622 NaN MALE Ira A. Eichner 1004 1992 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1993 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1994 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1995 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1996 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1997 AAR CORP 19550101
5622 NaN MALE Ira A. Eichner 1004 1998 AAR CORP 19550101
5623 NaN MALE David P. Storch 1004 1992 AAR CORP 19961009
5623 NaN MALE David P. Storch 1004 1993 AAR CORP 19961009
5623 NaN MALE David P. Storch 1004 1994 AAR CORP 19961009
5623 NaN MALE David P. Storch 1004 1995 AAR CORP 19961009
5623 NaN MALE David P. Storch 1004 1996 AAR CORP 19961009
REJOIN LEFTOFC LEFTCO RELEFT REASON PAGE 1992 1993 1994 \
5622 NaN 19961001 19990531 NaN RESIGNED 79 1 0 0
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 1 0
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 0 1
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 0 0
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 0 0
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 0 0
5622 NaN 19961001 19990531 NaN RESIGNED 79 0 0 0
5623 NaN NaN NaN NaN NaN 57 1 0 0
5623 NaN NaN NaN NaN NaN 57 0 1 0
5623 NaN NaN NaN NaN NaN 57 0 0 1
5623 NaN NaN NaN NaN NaN 57 0 0 0
5623 NaN NaN NaN NaN NaN 57 0 0 0
1995 1996 1997 1998
5622 0 0 0 0
5622 0 0 0 0
5622 0 0 0 0
5622 1 0 0 0
5622 0 1 0 0
5622 0 0 1 0
5622 0 0 0 1
5623 0 0 0 0
5623 0 0 0 0
5623 0 0 0 0
5623 1 0 0 0
5623 0 1 0 0
If you'd like to delete the YEAR
column, then you could follow this up with del df['YEAR']
. Or, drop the YEAR
column from df
before calling concat
:
df = pd.concat([df.drop('YEAR', axis=1), pd.get_dummies(df['YEAR'])], axis=1)