Proof: How many digits does a number have? $\lfloor \log_{10} n \rfloor +1$

Suppose that $n$ has $d$ digits; then $10^{d-1}\le n<10^d$, because $10^d$ is the smallest integer with $d+1$ digits. Now take logs base $10$: $\log_{10}10^k=k$, so the inequality becomes $d-1\le\log_{10}n<d$. If you now take the floor (= integer part) of $\log_{10}n$, throwing away everything to the right of the decimal point, you get $\lfloor\log_{10}n\rfloor=d-1$. Thus, $d=\lfloor\log_{10}n\rfloor+1$. This isn’t quite what you posted, but it’s the integer part of it, and clearly the number of digits must be an integer.


let's consider the binary base-2 system. Any decimal number (say 8) can be represented as $2^3$. So if you take $log_2(8)$ you get 3, which represents the number of bits to represent 8. Thus, any number between 8 and 16 can be represented with $\lceil log_2(N)\rceil$ bits and so on. You can easily extend this to digits.