Proving $\sum\limits_{k=0}^{n}\cos(kx)=\frac{1}{2}+\frac{\sin(\frac{2n+1}{2}x)}{2\sin(x/2)}$

I am being asked to prove that $$\sum\limits_{k=0}^{n}\cos(kx)=\frac{1}{2}+\frac{\sin(\frac{2n+1}{2}x)}{2\sin(x/2)}$$

I have some progress made, but I am stuck and could use some help.

What I did:

It holds that $$\sum\limits_{k=0}^{n}\cos(kx)=\sum\limits_{k=0}^{n}Re(\cos(kx))=\sum\limits_{k=0}^{n}Re(\cos(x)^{k})=Re(\sum\limits_{k=0}^{n}\cos(x)^{k})=Re\left(\cos(0)\cdot\frac{\cos(x)^{n}-1}{\cos(x)-1}\right)=Re\left(\frac{\cos(x)^{n}-1}{\cos(x)-1}\right) $$

For any $z_{1},z_{2}\in\mathbb{C}$ we have it that if $z_{1}=a+bi,z_{2}=c+di$ then $$\frac{z_{1}}{z_{2}}=\frac{z_{1}\overline{z2}}{|z_{2}|^{2}}=\frac{(a+bi)(c-di)}{|z_{2}|^{2}}=\frac{ac-bd+i(bc-ad)}{|z_{2}|^{2}}$$ hence $$Re\left(\frac{z_{1}}{z_{2}}\right)=\frac{Re(z_{1})Re(z_{2})-Im(z_{1})Im(z_{2})}{|z_{2}|^{2}}$$

Thus, $$Re\left(\frac{\cos(x)^{n}-1}{\cos(x)-1}\right)=\frac{(\cos(nx)-1)(\cos(x)-1)-\sin(nx)\sin(x)}{(\cos(x)-1)^{2}+\sin^{2}(x)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{\cos^{2}(x)-2\cos(x)+1+\sin^{2}(x)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2\cos(x)+2}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2(\cos(x)-1)}= \frac{=\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2(-2\cdot\sin^{2}(x/2))}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{4\sin^{2}(x/2)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{4\sin^{2}(x/2)}=\frac{\cos(x(n+1))-\cos(nx)-\cos(x)+1}{4\sin^{2}(x/2)} $$

This is the part where I am stuck, I would appriciate any help or hint on how to continue.

Edit: Given the corrections by André I get:

$$(\cos(nx+x)-1)(\cos(x)-1)+\sin(nx+x)\sin(x)=\cos(nx+x)\cos(x)-\cos(nx)-\cos(x)+1+\sin(nx+x)\sin(x)$$

so $$\cos(nx+x)\cos(x)+\sin(nx+x)\sin(x)=\cos(xn+x-x)-\cos(nx)=0$$

Edit 2: I found anoter mistake in the above, I will try to correct

Edit 3: When multiplying correctly the above it works out :-)


$$\sum_{0\le r\le n}e^{ikx}=\frac{e^{i(n+1)x}-1}{e^{ix}-1}$$

$$=\frac{e^{\frac{i(n+1)x}2}}{e^{\frac{ix}2}}\frac{\left(e^{\frac{i(n+1)x}2}-e^{-\frac{i(n+1)x}2}\right)}{\left( e^{\frac{ix}2}-e^{-\frac{ix}2}\right)}$$

$$=e^{\frac{inx}2}\frac{2i\sin\frac{(n+1)x}2}{2i\sin{\frac{x}2}}$$ as $e^{iy}-e^{-iy}=2i\sin y,$

$$=(\cos\frac{nx}2+i\sin\frac{nx}2)\frac{\sin\frac{(n+1)x}2}{\sin{\frac{x}2}}$$ using Euler's identity.

Its real part is $$\cos\frac{nx}2 \frac{\sin\frac{(n+1)x}2}{\sin{\frac{x}2}}=\frac{2\cos\frac{nx}2\sin\frac{(n+1)x}2}{2\sin{\frac{x}2}}=\frac{\sin\frac{(2n+1)x}2+\sin{\frac{x}2}}{2\sin{\frac{x}2}}$$ using $2\sin A\cos B=\sin(A+B)+\sin(A-B)$


Just multiply both sides by $2\sin(x/2)$ and use Briggs' formula: $$ 2 \sin(x/2)\cos(kx) = \sin((k+1/2)x)-\sin((k-1/2)x)$$ to get a telescoping sum.


Here is the simplest way I've found. \begin{align} 1+2\sum_{k=1}^ncos(\theta) & = \sum_{k=-n}^n e^{ik\theta} \\ & = \frac{e^{i(n+1/2)\theta}-e^{-i(n-1/2)\theta}}{e^{i\theta /2}-e^{-i\theta / 2}} \\ & =\frac{\sin(n+1/2)\theta}{\sin(\theta/2)} \\ \end{align} which can easily be rearranged to get the desired identity. See https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Lagrange's_trigonometric_identities