How do I get bit-by-bit data from an integer value in C?

I want to extract bits of a decimal number.

For example, 7 is binary 0111, and I want to get 0 1 1 1 all bits stored in bool. How can I do so?

OK, a loop is not a good option, can I do something else for this?


If you want the k-th bit of n, then do

(n & ( 1 << k )) >> k

Here we create a mask, apply the mask to n, and then right shift the masked value to get just the bit we want. We could write it out more fully as:

    int mask =  1 << k;
    int masked_n = n & mask;
    int thebit = masked_n >> k;

You can read more about bit-masking here.

Here is a program:

#include <stdio.h>
#include <stdlib.h>

int *get_bits(int n, int bitswanted){
  int *bits = malloc(sizeof(int) * bitswanted);

  int k;
  for(k=0; k<bitswanted; k++){
    int mask =  1 << k;
    int masked_n = n & mask;
    int thebit = masked_n >> k;
    bits[k] = thebit;
  }

  return bits;
}

int main(){
  int n=7;

  int  bitswanted = 5;

  int *bits = get_bits(n, bitswanted);

  printf("%d = ", n);

  int i;
  for(i=bitswanted-1; i>=0;i--){
    printf("%d ", bits[i]);
  }

  printf("\n");
}

As requested, I decided to extend my comment on forefinger's answer to a full-fledged answer. Although his answer is correct, it is needlessly complex. Furthermore all current answers use signed ints to represent the values. This is dangerous, as right-shifting of negative values is implementation-defined (i.e. not portable) and left-shifting can lead to undefined behavior (see this question).

By right-shifting the desired bit into the least significant bit position, masking can be done with 1. No need to compute a new mask value for each bit.

(n >> k) & 1

As a complete program, computing (and subsequently printing) an array of single bit values:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
    unsigned
        input = 0b0111u,
        n_bits = 4u,
        *bits = (unsigned*)malloc(sizeof(unsigned) * n_bits),
        bit = 0;

    for(bit = 0; bit < n_bits; ++bit)
        bits[bit] = (input >> bit) & 1;

    for(bit = n_bits; bit--;)
        printf("%u", bits[bit]);
    printf("\n");

    free(bits);
}

Assuming that you want to calculate all bits as in this case, and not a specific one, the loop can be further changed to

for(bit = 0; bit < n_bits; ++bit, input >>= 1)
    bits[bit] = input & 1;

This modifies input in place and thereby allows the use of a constant width, single-bit shift, which may be more efficient on some architectures.


Here's one way to do it—there are many others:

bool b[4];
int v = 7;  // number to dissect

for (int j = 0;  j < 4;  ++j)
   b [j] =  0 != (v & (1 << j));

It is hard to understand why use of a loop is not desired, but it is easy enough to unroll the loop:

bool b[4];
int v = 7;  // number to dissect

b [0] =  0 != (v & (1 << 0));
b [1] =  0 != (v & (1 << 1));
b [2] =  0 != (v & (1 << 2));
b [3] =  0 != (v & (1 << 3));

Or evaluating constant expressions in the last four statements:

b [0] =  0 != (v & 1);
b [1] =  0 != (v & 2);
b [2] =  0 != (v & 4);
b [3] =  0 != (v & 8);

Here's a very simple way to do it;

int main()
{
    int s=7,l=1;
    vector <bool> v;
    v.clear();
    while (l <= 4)
    {
        v.push_back(s%2);
        s /= 2;
        l++;
    }
    for (l=(v.size()-1); l >= 0; l--)
    {
        cout<<v[l]<<" ";
    }
    return 0;
}

@prateek thank you for your help. I rewrote the function with comments for use in a program. Increase 8 for more bits (up to 32 for an integer).

std::vector <bool> bits_from_int (int integer)    // discern which bits of PLC codes are true
{
    std::vector <bool> bool_bits;

    // continously divide the integer by 2, if there is no remainder, the bit is 1, else it's 0
    for (int i = 0; i < 8; i++)
    {
        bool_bits.push_back (integer%2);    // remainder of dividing by 2
        integer /= 2;    // integer equals itself divided by 2
    }

    return bool_bits;
}