Get list of pandas dataframe columns based on data type
If I have a dataframe with the following columns:
1. NAME object
2. On_Time object
3. On_Budget object
4. %actual_hr float64
5. Baseline Start Date datetime64[ns]
6. Forecast Start Date datetime64[ns]
I would like to be able to say: for this dataframe, give me a list of the columns which are of type 'object' or of type 'datetime'?
I have a function which converts numbers ('float64') to two decimal places, and I would like to use this list of dataframe columns, of a particular type, and run it through this function to convert them all to 2dp.
Maybe something like:
For c in col_list: if c.dtype = "Something"
list[]
List.append(c)?
Solution 1:
If you want a list of columns of a certain type, you can use groupby
:
>>> df = pd.DataFrame([[1, 2.3456, 'c', 'd', 78]], columns=list("ABCDE"))
>>> df
A B C D E
0 1 2.3456 c d 78
[1 rows x 5 columns]
>>> df.dtypes
A int64
B float64
C object
D object
E int64
dtype: object
>>> g = df.columns.to_series().groupby(df.dtypes).groups
>>> g
{dtype('int64'): ['A', 'E'], dtype('float64'): ['B'], dtype('O'): ['C', 'D']}
>>> {k.name: v for k, v in g.items()}
{'object': ['C', 'D'], 'int64': ['A', 'E'], 'float64': ['B']}
Solution 2:
As of pandas v0.14.1, you can utilize select_dtypes()
to select columns by dtype
In [2]: df = pd.DataFrame({'NAME': list('abcdef'),
'On_Time': [True, False] * 3,
'On_Budget': [False, True] * 3})
In [3]: df.select_dtypes(include=['bool'])
Out[3]:
On_Budget On_Time
0 False True
1 True False
2 False True
3 True False
4 False True
5 True False
In [4]: mylist = list(df.select_dtypes(include=['bool']).columns)
In [5]: mylist
Out[5]: ['On_Budget', 'On_Time']
Solution 3:
Using dtype
will give you desired column's data type:
dataframe['column1'].dtype
if you want to know data types of all the column at once, you can use plural of dtype
as dtypes:
dataframe.dtypes
Solution 4:
list(df.select_dtypes(['object']).columns)
This should do the trick
Solution 5:
You can use boolean mask on the dtypes attribute:
In [11]: df = pd.DataFrame([[1, 2.3456, 'c']])
In [12]: df.dtypes
Out[12]:
0 int64
1 float64
2 object
dtype: object
In [13]: msk = df.dtypes == np.float64 # or object, etc.
In [14]: msk
Out[14]:
0 False
1 True
2 False
dtype: bool
You can look at just those columns with the desired dtype:
In [15]: df.loc[:, msk]
Out[15]:
1
0 2.3456
Now you can use round (or whatever) and assign it back:
In [16]: np.round(df.loc[:, msk], 2)
Out[16]:
1
0 2.35
In [17]: df.loc[:, msk] = np.round(df.loc[:, msk], 2)
In [18]: df
Out[18]:
0 1 2
0 1 2.35 c