Count the frequency that a value occurs in a dataframe column
Solution 1:
Use groupby
and count
:
In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df.groupby('a').count()
Out[37]:
a
a
a 2
b 3
s 2
[3 rows x 1 columns]
See the online docs: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
Also value_counts()
as @DSM has commented, many ways to skin a cat here
In [38]:
df['a'].value_counts()
Out[38]:
b 3
a 2
s 2
dtype: int64
If you wanted to add frequency back to the original dataframe use transform
to return an aligned index:
In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df
Out[41]:
a freq
0 a 2
1 b 3
2 s 2
3 s 2
4 b 3
5 a 2
6 b 3
[7 rows x 2 columns]
Solution 2:
If you want to apply to all columns you can use:
df.apply(pd.value_counts)
This will apply a column based aggregation function (in this case value_counts) to each of the columns.
Solution 3:
df.category.value_counts()
This short little line of code will give you the output you want.
If your column name has spaces you can use
df['category'].value_counts()