How to return a std::string.c_str()
Solution 1:
What happens in this code is:
const char * returnCharPtr()
{
std::string someString("something");
return someString.c_str();
}
- instance of
std::string
is created - it is an object with automatic storage duration - pointer to the internal memory of this string is returned
- object
someString
is destructed and the its internal memory is cleaned up - caller of this function receives dangling pointer (invalid pointer) which yields undefined behavior
The best solution is to return an object:
std::string returnString()
{
std::string someString("something");
return someString;
}
When calling your function, DO NOT do this:
const char *returnedString = returnString().c_str();
because returnedString
will still be dangling after the returned std::string
is destructed. Instead store the entire std::string
:
std::string returnedString = returnString();
// ... use returnedString.c_str() later ...
Solution 2:
In C++, the simplest thing to do is to just returna std::string
(which is also efficient thanks to optimizations like RVO and C++11 move semantics):
std::string returnSomeString()
{
std::string someString;
// some processing...
return someString;
}
If you really need a raw C char*
pointer, you can always call .c_str()
on the returned value, e.g.
// void SomeLegacyFunction(const char * psz)
// .c_str() called on the returned string, to get the 'const char*'
SomeLegacyFunction( returnSomeString().c_str() );
If you really want to return a char*
pointer from the function, you can dynamically allocate string memory on the heap (e.g. using new[]
), and return a pointer to that:
// NOTE: The caller owns the returned pointer,
// and must free the string using delete[] !!!
const char* returnSomeString()
{
std::string someString;
// some processing...
// Dynamically allocate memory for the returned string
char* ptr = new char[someString.size() + 1]; // +1 for terminating NUL
// Copy source string in dynamically allocated string buffer
strcpy(ptr, someString.c_str());
// Return the pointer to the dynamically allocated buffer
return ptr;
}
An alternative is to provide a destination buffer pointer and the buffer size (to avoid buffer overruns!) as function parameters:
void returnSomeString(char* destination, size_t destinationSize)
{
std::string someString;
// some processing...
// Copy string to destination buffer.
// Use some safe string copy function to avoid buffer overruns.
strcpy_s(destination, destinationSize, someString.c_str());
}
Solution 3:
As this question is flagged C, do this:
#define _POSIX_C_SOURCE 200809L
#include <string.h>
const char * returnCharPtr()
{
std::string someString;
// some processing!.
return strdup(someString.c_str()); /* Dynamically create a copy on the heap. */
}
Do not forget to free()
what the function returned if of no use anymore.
Solution 4:
Well, COVERITY is correct. The reason your current approach will fail is because the instance of std::string
you created inside the function will only be valid for as long as that function is running. Once your program leaves the function's scope, std::string's destructor will be called and that will be the end of your string.
But if what you want is a C-string, how about...
const char * returnCharPtr()
{
std::string someString;
// some processing!.
char * new_string = new char[someString.length() + 1];
std::strcpy(new:string, someString.c_str());
return new_string;
}
But wait... that's almost exactly as returning a std::string
, isn't it?
std::string returnCharPtr()
{
std::string someString;
// some processing!.
return new_string;
}
This will copy your string to a new one outside of the function's scope. It works, but it does create a new copy of the string.
Thanks to Return Value Optimization, this won't create a copy (thanks for all corrections!).
So, another option is to pass the parameter as an argument, so you process your string in a function but don't create a new copy. :
void returnCharPtr(std::string & someString)
{
// some processing!.
}
Or, again, if you want C-Strings, you need to watch out for the length of your string:
void returnCharPtr(char*& someString, int n) // a reference to pointer, params by ref
{
// some processing!.
}
Solution 5:
The best way would be to return an std::string
, which does automatic memory management for you. If, on the other hand, you were really into returning a const char*
which points to some memory allocated by you from within returnCharPtr
, then it'd have to be freed by someone else explicitly.
Stay with std::string
.