Pandas: drop a level from a multi-level column index?
If I've got a multi-level column index:
>>> cols = pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")])
>>> pd.DataFrame([[1,2], [3,4]], columns=cols)
a ---+-- b | c --+---+-- 0 | 1 | 2 1 | 3 | 4
How can I drop the "a" level of that index, so I end up with:
b | c --+---+-- 0 | 1 | 2 1 | 3 | 4
Solution 1:
You can use MultiIndex.droplevel
:
>>> cols = pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")])
>>> df = pd.DataFrame([[1,2], [3,4]], columns=cols)
>>> df
a
b c
0 1 2
1 3 4
[2 rows x 2 columns]
>>> df.columns = df.columns.droplevel()
>>> df
b c
0 1 2
1 3 4
[2 rows x 2 columns]
Solution 2:
Another way to drop the index is to use a list comprehension:
df.columns = [col[1] for col in df.columns]
b c
0 1 2
1 3 4
This strategy is also useful if you want to combine the names from both levels like in the example below where the bottom level contains two 'y's:
cols = pd.MultiIndex.from_tuples([("A", "x"), ("A", "y"), ("B", "y")])
df = pd.DataFrame([[1,2, 8 ], [3,4, 9]], columns=cols)
A B
x y y
0 1 2 8
1 3 4 9
Dropping the top level would leave two columns with the index 'y'. That can be avoided by joining the names with the list comprehension.
df.columns = ['_'.join(col) for col in df.columns]
A_x A_y B_y
0 1 2 8
1 3 4 9
That's a problem I had after doing a groupby and it took a while to find this other question that solved it. I adapted that solution to the specific case here.
Solution 3:
As of Pandas 0.24.0, we can now use DataFrame.droplevel():
cols = pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")])
df = pd.DataFrame([[1,2], [3,4]], columns=cols)
df.droplevel(0, axis=1)
# b c
#0 1 2
#1 3 4
This is very useful if you want to keep your DataFrame method-chain rolling.
Solution 4:
Another way to do this is to reassign df
based on a cross section of df
, using the .xs method.
>>> df
a
b c
0 1 2
1 3 4
>>> df = df.xs('a', axis=1, drop_level=True)
# 'a' : key on which to get cross section
# axis=1 : get cross section of column
# drop_level=True : returns cross section without the multilevel index
>>> df
b c
0 1 2
1 3 4
Solution 5:
You could also achieve that by renaming the columns:
df.columns = ['a', 'b']
This involves a manual step but could be an option especially if you would eventually rename your data frame.