Convert number strings with commas in pandas DataFrame to float
Solution 1:
If you're reading in from csv then you can use the thousands arg:
df.read_csv('foo.tsv', sep='\t', thousands=',')
This method is likely to be more efficient than performing the operation as a separate step.
You need to set the locale first:
In [ 9]: import locale
In [10]: from locale import atof
In [11]: locale.setlocale(locale.LC_NUMERIC, '')
Out[11]: 'en_GB.UTF-8'
In [12]: df.applymap(atof)
Out[12]:
0 1
0 1200 4200.00
1 7000 -0.03
2 5 0.00
Solution 2:
You may use the pandas.Series.str.replace method:
df.iloc[:,:].str.replace(',', '').astype(float)
This method can remove or replace the comma in the string.
Solution 3:
You can convert one column at a time like this :
df['colname'] = df['colname'].str.replace(',', '').astype(float)