Refining the central limit theorem on discrete random vars
Solution 1:
For a discrete random variable $X$ with support $\mathbb{Z}$, the Fourier transform of the probability distribution $P_x \equiv P[X=x]$ is given by $$ \tilde{P}(k) = \sum_{x=-\infty}^{\infty} e^{ikx} P_x = E\left[e^{ikx}\right] = e^{h(k)}, $$ where $$ h(k) = \sum_{n=1}^{\infty} \kappa_{n} \frac {(ik)^{n}}{n!} $$ is the natural logarithm of the characteristic function of $X$, and $\kappa_{n}$ is the $n$th cumulant of $X$. Recall that $\kappa_{1} = \mu$ is the mean and $\kappa_{2} = \sigma^2$ is the variance. The probability that a sum of $M$ independent variables $X_i$ with the same distribution is exactly $x \in {\mathbb{Z}}$ is then $$ \begin{eqnarray} P\left[\sum_{i=1}^{M} X_i = x\right] &=& \int_{-\pi}^{\pi}\frac{dk}{2\pi} e^{-ikx}\tilde{P}(k)^M \\ &=& \int_{-\pi}^{\pi}\frac{dk}{2\pi} e^{Mh(k)-ikx} \\ &=& \int_{-\pi}^{\pi}\frac{dk}{2\pi} e^{ik(M\mu - x) - \frac{1}{2}M\sigma^2 k^2} \exp\left(\sum_{n=3}^{\infty}M\kappa_{n}\frac{(ik)^{n}}{n!}\right). \end{eqnarray} $$ Considering the desired case where $x = M\mu \in {\mathbb{Z}}$, and making the change of variable $k \rightarrow k/(\sigma\sqrt{M})$, we have $$ P\left[\sum_{i=1}^{M} X_i = M\mu\right] = \frac{1}{\sigma\sqrt{2\pi M}}\int_{-\pi\sigma\sqrt{M}}^{\pi\sigma\sqrt{M}} d\Phi(k) \exp\left(\sum_{n=3}^{\infty} \sigma^{-n}M^{1-\frac{1}{2}n}\kappa_{n}\frac{(ik)^{n}}{n!}\right), $$ where $d\Phi(k) = \phi(k) dk$ is the standard normal distribution (with mean $0$ and variance $1$). Here we assume that exponential decays rapidly away from $k=0$, so we may replace the limits of integration by $\pm\infty$. Then, expanding the exponential in inverse powers of $M$, and using the fact that the $n$th central moment of the standard normal distribution vanishes for odd $n$ and is equal to $(n-1)!!$ for even $n$, we obtain the following: $$ P\left[\sum_{i=1}^{M} X_i = M\mu\right] = \frac{1}{\sigma\sqrt{2\pi M}}\left(1 + \frac{\kappa_4}{8M\sigma^4} - \frac{5\kappa_3^2}{24M\sigma^6} + O(M^{-2})\right). $$ This is essentially the Edgeworth expansion. If $X$ is the Bernoulli distribution with probability of success $p = \frac{1}{2}(1+a)$ (and of failure $q=\frac{1}{2}(1-a)$), then it is straightforward to verify that $$ \begin{eqnarray} \kappa_2 &=& \sigma^2 = pq = \frac{1}{4}(1-a^2) \\ \kappa_3 &=& \frac{1}{4}(1-a^2)(-a) = -\frac{1}{4}a(1-a^2) \\ \kappa_4 &=& \frac{1}{8}(1-a^2)(3a^2-1), \end{eqnarray} $$ and hence $$ \begin{eqnarray} \frac{5\kappa_3^2}{24\sigma^6} &=& \frac{5a^2}{6(1-a^2)} \\ \frac{\kappa_4}{8\sigma^4} &=& \frac{3a^2 - 1}{4(1-a^2)}, \end{eqnarray} $$ for a total correction term proportional to $$ -\frac{5\kappa_3^2}{24M\sigma^6} + \frac{\kappa_4}{8M\sigma^4} = \frac{9a^2-3-10a^2}{12M(1-a^2)} = -\frac{3+a^2}{12M(1-a^2)} = -\frac{1-pq}{12Mpq}, $$ which agrees with the Stirling approximation to the exact result.