Finding non-numeric rows in dataframe in pandas?

You could use np.isreal to check the type of each element (applymap applies a function to each element in the DataFrame):

In [11]: df.applymap(np.isreal)
Out[11]:
          a     b
item
a      True  True
b      True  True
c      True  True
d     False  True
e      True  True

If all in the row are True then they are all numeric:

In [12]: df.applymap(np.isreal).all(1)
Out[12]:
item
a        True
b        True
c        True
d       False
e        True
dtype: bool

So to get the subDataFrame of rouges, (Note: the negation, ~, of the above finds the ones which have at least one rogue non-numeric):

In [13]: df[~df.applymap(np.isreal).all(1)]
Out[13]:
        a    b
item
d     bad  0.4

You could also find the location of the first offender you could use argmin:

In [14]: np.argmin(df.applymap(np.isreal).all(1))
Out[14]: 'd'

As @CTZhu points out, it may be slightly faster to check whether it's an instance of either int or float (there is some additional overhead with np.isreal):

df.applymap(lambda x: isinstance(x, (int, float)))

Already some great answers to this question, however here is a nice snippet that I use regularly to drop rows if they have non-numeric values on some columns:

# Eliminate invalid data from dataframe (see Example below for more context)

num_df = (df.drop(data_columns, axis=1)
         .join(df[data_columns].apply(pd.to_numeric, errors='coerce')))

num_df = num_df[num_df[data_columns].notnull().all(axis=1)]

The way this works is we first drop all the data_columns from the df, and then use a join to put them back in after passing them through pd.to_numeric (with option 'coerce', such that all non-numeric entries are converted to NaN). The result is saved to num_df.

On the second line we use a filter that keeps only rows where all values are not null.

Note that pd.to_numeric is coercing to NaN everything that cannot be converted to a numeric value, so strings that represent numeric values will not be removed. For example '1.25' will be recognized as the numeric value 1.25.

Disclaimer: pd.to_numeric was introduced in pandas version 0.17.0

Example:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({"item": ["a", "b", "c", "d", "e"],
   ...:                    "a": [1,2,3,"bad",5],
   ...:                    "b":[0.1,0.2,0.3,0.4,0.5]})

In [3]: df
Out[3]: 
     a    b item
0    1  0.1    a
1    2  0.2    b
2    3  0.3    c
3  bad  0.4    d
4    5  0.5    e

In [4]: data_columns = ['a', 'b']

In [5]: num_df = (df
   ...:           .drop(data_columns, axis=1)
   ...:           .join(df[data_columns].apply(pd.to_numeric, errors='coerce')))

In [6]: num_df
Out[6]: 
  item   a    b
0    a   1  0.1
1    b   2  0.2
2    c   3  0.3
3    d NaN  0.4
4    e   5  0.5

In [7]: num_df[num_df[data_columns].notnull().all(axis=1)]
Out[7]: 
  item  a    b
0    a  1  0.1
1    b  2  0.2
2    c  3  0.3
4    e  5  0.5

# Original code
df = pd.DataFrame({'a': [1, 2, 3, 'bad', 5],
                   'b': [0.1, 0.2, 0.3, 0.4, 0.5],
                   'item': ['a', 'b', 'c', 'd', 'e']})
df = df.set_index('item')

Convert to numeric using 'coerce' which fills bad values with 'nan'

a = pd.to_numeric(df.a, errors='coerce')

Use isna to return a boolean index:

idx = a.isna()

Apply that index to the data frame:

df[idx]

output

Returns the row with the bad data in it:

        a    b
item          
d     bad  0.4