How do I print the type of a variable in Rust?

I have the following:

let mut my_number = 32.90;

How do I print the type of my_number?

Using type and type_of did not work. Is there another way I can print the number's type?


Solution 1:

You can use the std::any::type_name function. This doesn't need a nightly compiler or an external crate, and the results are quite correct:

fn print_type_of<T>(_: &T) {
    println!("{}", std::any::type_name::<T>())
}

fn main() {
    let s = "Hello";
    let i = 42;

    print_type_of(&s); // &str
    print_type_of(&i); // i32
    print_type_of(&main); // playground::main
    print_type_of(&print_type_of::<i32>); // playground::print_type_of<i32>
    print_type_of(&{ || "Hi!" }); // playground::main::{{closure}}
}

Be warned: as said in the documentation, this information must be used for a debug purpose only:

This is intended for diagnostic use. The exact contents and format of the string are not specified, other than being a best-effort description of the type.

If you want your type representation to stay the same between compiler versions, you should use a trait, like in the phicr's answer.

Solution 2:

If you merely wish to find out the type of a variable and are willing to do it at compile time, you can cause an error and get the compiler to pick it up.

For example, set the variable to a type which doesn't work:

let mut my_number: () = 32.90;
// let () = x; would work too
error[E0308]: mismatched types
 --> src/main.rs:2:29
  |
2 |     let mut my_number: () = 32.90;
  |                             ^^^^^ expected (), found floating-point number
  |
  = note: expected type `()`
             found type `{float}`

Or call an invalid method:

let mut my_number = 32.90;
my_number.what_is_this();
error[E0599]: no method named `what_is_this` found for type `{float}` in the current scope
 --> src/main.rs:3:15
  |
3 |     my_number.what_is_this();
  |               ^^^^^^^^^^^^

Or access an invalid field:

let mut my_number = 32.90;
my_number.what_is_this
error[E0610]: `{float}` is a primitive type and therefore doesn't have fields
 --> src/main.rs:3:15
  |
3 |     my_number.what_is_this
  |               ^^^^^^^^^^^^

These reveal the type, which in this case is actually not fully resolved. It’s called “floating-point variable” in the first example, and “{float}” in all three examples; this is a partially resolved type which could end up f32 or f64, depending on how you use it. “{float}” is not a legal type name, it’s a placeholder meaning “I’m not completely sure what this is”, but it is a floating-point number. In the case of floating-point variables, if you don't constrain it, it will default to f64¹. (An unqualified integer literal will default to i32.)

See also:

  • What is the {integer} or {float} in a compiler error message?

¹ There may still be ways of baffling the compiler so that it can’t decide between f32 and f64; I’m not sure. It used to be as simple as 32.90.eq(&32.90), but that treats both as f64 now and chugs along happily, so I don’t know.

Solution 3:

There is an unstable function std::intrinsics::type_name that can get you the name of a type, though you have to use a nightly build of Rust (this is unlikely to ever work in stable Rust). Here’s an example:

#![feature(core_intrinsics)]

fn print_type_of<T>(_: &T) {
    println!("{}", unsafe { std::intrinsics::type_name::<T>() });
}

fn main() {
    print_type_of(&32.90);          // prints "f64"
    print_type_of(&vec![1, 2, 4]);  // prints "std::vec::Vec<i32>"
    print_type_of(&"foo");          // prints "&str"
}

Solution 4:

If you know all the types beforehand, you can use traits to add a type_of method:

trait TypeInfo {
    fn type_of(&self) -> &'static str;
}

impl TypeInfo for i32 {
    fn type_of(&self) -> &'static str {
        "i32"
    }
}

impl TypeInfo for i64 {
    fn type_of(&self) -> &'static str {
        "i64"
    }
}

//...

No intrisics or nothin', so although more limited this is the only solution here that gets you a string and is stable. (see Boiethios's answer) However, it's very laborious and doesn't account for type parameters, so we could...

trait TypeInfo {
    fn type_name() -> String;
    fn type_of(&self) -> String;
}

macro_rules! impl_type_info {
    ($($name:ident$(<$($T:ident),+>)*),*) => {
        $(impl_type_info_single!($name$(<$($T),*>)*);)*
    };
}

macro_rules! mut_if {
    ($name:ident = $value:expr, $($any:expr)+) => (let mut $name = $value;);
    ($name:ident = $value:expr,) => (let $name = $value;);
}

macro_rules! impl_type_info_single {
    ($name:ident$(<$($T:ident),+>)*) => {
        impl$(<$($T: TypeInfo),*>)* TypeInfo for $name$(<$($T),*>)* {
            fn type_name() -> String {
                mut_if!(res = String::from(stringify!($name)), $($($T)*)*);
                $(
                    res.push('<');
                    $(
                        res.push_str(&$T::type_name());
                        res.push(',');
                    )*
                    res.pop();
                    res.push('>');
                )*
                res
            }
            fn type_of(&self) -> String {
                $name$(::<$($T),*>)*::type_name()
            }
        }
    }
}

impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a T {
    fn type_name() -> String {
        let mut res = String::from("&");
        res.push_str(&T::type_name());
        res
    }
    fn type_of(&self) -> String {
        <&T>::type_name()
    }
}

impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a mut T {
    fn type_name() -> String {
        let mut res = String::from("&mut ");
        res.push_str(&T::type_name());
        res
    }
    fn type_of(&self) -> String {
        <&mut T>::type_name()
    }
}

macro_rules! type_of {
    ($x:expr) => { (&$x).type_of() };
}

Let's use it:

impl_type_info!(i32, i64, f32, f64, str, String, Vec<T>, Result<T,S>)

fn main() {
    println!("{}", type_of!(1));
    println!("{}", type_of!(&1));
    println!("{}", type_of!(&&1));
    println!("{}", type_of!(&mut 1));
    println!("{}", type_of!(&&mut 1));
    println!("{}", type_of!(&mut &1));
    println!("{}", type_of!(1.0));
    println!("{}", type_of!("abc"));
    println!("{}", type_of!(&"abc"));
    println!("{}", type_of!(String::from("abc")));
    println!("{}", type_of!(vec![1,2,3]));

    println!("{}", <Result<String,i64>>::type_name());
    println!("{}", <&i32>::type_name());
    println!("{}", <&str>::type_name());
}

output:

i32
&i32
&&i32
&mut i32
&&mut i32
&mut &i32
f64
&str
&&str
String
Vec<i32>
Result<String,i64>
&i32
&str

Rust Playground