Creating a pandas DataFrame from columns of other DataFrames with similar indexes

You can use concat:

In [11]: pd.concat([df1['c'], df2['c']], axis=1, keys=['df1', 'df2'])
Out[11]: 
                 df1       df2
2014-01-01       NaN -0.978535
2014-01-02 -0.106510 -0.519239
2014-01-03 -0.846100 -0.313153
2014-01-04 -0.014253 -1.040702
2014-01-05  0.315156 -0.329967
2014-01-06 -0.510577 -0.940901
2014-01-07       NaN -0.024608
2014-01-08       NaN -1.791899

[8 rows x 2 columns]

The axis argument determines the way the DataFrames are stacked:

df1 = pd.DataFrame([1, 2, 3])
df2 = pd.DataFrame(['a', 'b', 'c'])

pd.concat([df1, df2], axis=0)
   0
0  1
1  2
2  3
0  a
1  b
2  c

pd.concat([df1, df2], axis=1)

   0  0
0  1  a
1  2  b
2  3  c

Well, I'm not sure that merge would be the way to go. Personally I would build a new data frame by creating an index of the dates and then constructing the columns using list comprehensions. Possibly not the most pythonic way, but it seems to work for me!

import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randn(5,3), index=pd.date_range('01/02/2014',periods=5,freq='D'), columns=['a','b','c'] )
df2 = pd.DataFrame(np.random.randn(8,3), index=pd.date_range('01/01/2014',periods=8,freq='D'), columns=['a','b','c'] )

# Create an index list from the set of dates in both data frames
Index = list(set(list(df1.index) + list(df2.index)))
Index.sort()

df3 = pd.DataFrame({'df1': [df1.loc[Date, 'c'] if Date in df1.index else np.nan for Date in Index],\
                'df2': [df2.loc[Date, 'c'] if Date in df2.index else np.nan for Date in Index],},\
                index = Index)

df3